12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced expression of gene coding for β-endorphin in human monocytic cells exposed to pulsed radio frequency electric fields through thermal and non-thermal effects

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The enhanced expression of endogenous opioid peptides, including β-endorphin, has been implicated in the mechanism of action of pulsed radio frequency (PRF) application in pain modulation. Because thermal effects cannot be separated from the physical property of PRF application to biological tissues, we evaluated whether temperatures higher than that of the normal body temperature (37°C) modulate mRNA expression for the precursor of β-endorphin, proopiomelanocortin (POMC) in human monocytic cells THP-1. We also attempted to examine whether mechanisms other than thermal effects also modulate such gene expression.

          Methods and results

          The mRNA for POMC in THP-1 cells increased by a 15-minutes incubation at 42°C, 45°C, or 70°C without PRF application as compared with that in cells incubated at 37°C. On the other hand, gene expression for POMC in cells incubated at 20°C as well as at 37°C with PRF application for 15 minutes increased as compared to that in cells incubated at 37°C without PRF application. Continuous radio frequency at 70°C but not PRF provoked apoptotic cell death at 1–2 hour, and necrotic cell death at 24 hours after the RF application.

          Conclusion

          A simple experimental system using human monocytic cells in culture demonstrated that a 15 minute elevation of temperature above 37°C enhanced gene expression for POMC in THP-1 cells, while a 15 minute application of PRF to these cells incubated at 37°C or lower, also enhanced gene expression, indicating that temperature-independent mechanisms as well as thermal effects may be involved in such gene expression.

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electric and thermal field effects in tissue around radiofrequency electrodes.

            A study is carried out of the spatial distribution and time dependence of electric and thermal fields in the tissue around a radiofrequency (RF) electrode used in pain therapy. Finite-element calculation of the fields is performed, and results are compared with ex vivo tissue data. Field predictions are made for continuous and for pulsed RF applications. A special RF cannula electrode is constructed with both macro and micro thermocouple sensors to measure both average and rapid, transitory temperature effects. Temperatures and impedances are recorded in liver and egg-white models using signal outputs from a commercially available RF lesion generator. These data are compared with the results of finite-element calculations using electric field equations and the bio-heat equation. Average and pulsatory temperatures at the RF electrode are measured. Rapid temperature spikes during pulsed RF bursts are observed. These data compared well with theoretical calculations using known electrical and thermal tissue parameters. Continuous RF lesioning causes heat destruction of neurons. Pulsed RF lesioning (PRFL) produces heat bursts with temperatures in the range associated with destructive heat lesions. PRFL also produces very high electric fields that may be capable of disrupting neuronal membranes and function. Finite-element calculations agree substantially with the measured data, giving confidence to their predictions of fields around the RF electrode.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications—a review

              Background The objective of this review is to evaluate the efficacy of Pulsed Radiofrequency (PRF) treatment in chronic pain management in randomized clinical trials (RCTs) and well-designed observational studies. The physics, mechanisms of action, and biological effects are discussed to provide the scientific basis for this promising modality. Methods We systematically searched for clinical studies on PRF. We searched the MEDLINE (PubMed) and EMBASE database, using the free text terms: pulsed radiofrequency, radio frequency, radiation, isothermal radiofrequency, and combination of these. We classified the information in two tables, one focusing only on RCTs, and another, containing prospective studies. Date of last electronic search was 30 May 2010. The methodological quality of the presented reports was scored using the original criteria proposed by Jadad et al. Findings We found six RCTs that evaluated the efficacy of PRF, one against corticosteroid injection, one against sham intervention, and the rest against conventional RF thermocoagulation. Two trials were conducted in patients with lower back pain due to lumbar zygapophyseal joint pain, one in cervical radicular pain, one in lumbosacral radicular pain, one in trigeminal neuralgia, and another in chronic shoulder pain. Conclusion From the available evidence, the use of PRF to the dorsal root ganglion in cervical radicular pain is compelling. With regards to its lumbosacral counterpart, the use of PRF cannot be similarly advocated in view of the methodological quality of the included study. PRF application to the supracapular nerve was found to be as efficacious as intra-articular corticosteroid in patients with chronic shoulder pain. The use of PRF in lumbar facet arthropathy and trigeminal neuralgia was found to be less effective than conventional RF thermocoagulation techniques.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2018
                16 November 2018
                : 11
                : 2887-2896
                Affiliations
                [1 ]Department of Anesthesiology and Pain Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan, azma@ 123456hospk.ncgm.go.jp
                [2 ]Department of Anesthesiology, Saitama Medical University Hospital, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan, azma@ 123456hospk.ncgm.go.jp
                [3 ]Department of Dental Anesthesiology, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
                Author notes
                Correspondence: Toshiharu Azma, Department of Anesthesiology and Pain Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, Kohnodai 1-7-1, Ichikawa, Chiba 272-8516, Japan, Email azma@ 123456hospk.ncgm.go.jp
                Article
                jpr-11-2887
                10.2147/JPR.S171974
                6247966
                a1ef471d-e82e-4ee5-9932-18522b89024a
                © 2018 Azma et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                pulsed radio frequency electric field,human monocytic cells,thp-1,proopiomela-nocortin,β-endorphin,necrosis,apoptosis,apoptotic vesicle

                Comments

                Comment on this article