29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Spatial Framework for Understanding Population Structure and Admixture

      research-article
      1 , * , 2 , 1
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler ( Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.

          Author Summary

          In this paper, we introduce a statistical method for inferring, for a set of sequenced samples, a map in which the distances between population locations reflect genetic, rather than geographic, proximity. Two populations that are sampled at distant locations but that are genetically similar (perhaps one was recently founded by a colonization event from the other) may have inferred locations that are nearby, while two populations that are sampled close together, but that are genetically dissimilar (e.g., are separated by a barrier), may have inferred locations that are farther apart. The result is a “geogenetic” map in which the distances between populations are effective distances, indicative of the way that populations perceive the distances between themselves: the “organism’s-eye view” of the world. Added to this, “admixture” can be thought of as the outcome of unusually long-distance gene flow; it results in relatedness between populations that is anomalously high given the distance that separates them. We depict the effect of admixture using arrows, from a source of admixture to its target, on the inferred map. The inferred geogenetic map is an intuitive and information-rich visual summary of patterns of population structure.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Ancient human genomes suggest three ancestral populations for present-day Europeans

          We sequenced genomes from a $\sim$7,000 year old early farmer from Stuttgart in Germany, an $\sim$8,000 year old hunter-gatherer from Luxembourg, and seven $\sim$8,000 year old hunter-gatherers from southern Sweden. We analyzed these data together with other ancient genomes and 2,345 contemporary humans to show that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE), who were most closely related to Upper Paleolithic Siberians and contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations' deep relationships and show that EEF had $\sim$44% ancestry from a "Basal Eurasian" lineage that split prior to the diversification of all other non-African lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inferring human population size and separation history from multiple genome sequences

            The availability of complete human genome sequences from populations across the world has given rise to new population genetic inference methods that explicitly model their ancestral relationship under recombination and mutation. So far, application of these methods to evolutionary history more recent than 20-30 thousand years ago and to population separations has been limited. Here we present a new method that overcomes these shortcomings. The Multiple Sequentially Markovian Coalescent (MSMC) analyses the observed pattern of mutations in multiple individuals, focusing on the first coalescence between any two individuals. Results from applying MSMC to genome sequences from nine populations across the world suggest that the genetic separation of non-African ancestors from African Yoruban ancestors started long before 50,000 years ago, and give information about human population history as recently as 2,000 years ago, including the bottleneck in the peopling of the Americas, and separations within Africa, East Asia and Europe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genetic atlas of human admixture history.

              Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                January 2016
                15 January 2016
                : 12
                : 1
                : e1005703
                Affiliations
                [1 ]Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California, United States of America
                [2 ]Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
                University of California, Berkeley, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GSB PLR GMC. Performed the experiments: GSB. Analyzed the data: GSB. Contributed reagents/materials/analysis tools: GSB PLR GMC. Wrote the paper: GSB PLR GMC.

                Article
                PGENETICS-D-15-00315
                10.1371/journal.pgen.1005703
                4714911
                26771578
                a1f7dabb-fbe8-42e6-a06a-b01c19d7b94c
                © 2016 Bradburd et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 February 2015
                : 5 November 2015
                Page count
                Figures: 11, Tables: 2, Pages: 38
                Funding
                This work was supported by the following grants: National Science Foundation (nsf.gov) Grant Number 1262645 to PLR and GMC; National Science Foundation (nsf.gov) Grant Numbers 1148897 and 1402725 to GB; National Institute of Health ( http://nih.gov/) Grant numbers RO1GM83098 and RO1GM107374 to GC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article