44
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NDUFAF7 Methylates Arginine 85 in the NDUFS2 Subunit of Human Complex I*

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Arginine 85 of NDUFS2, a subunit of mitochondrial complex I, is symmetrically dimethylated.

          Results: NDUFAF7, a protein methylase in the matrix of mitochondria, modifies arginine 85 of NDUFS2 during assembly of complex I.

          Conclusion: Methylation of arginine 85 of NDUFS2 is required for assembly of complex I.

          Significance: The arginine protein methylase, NDUFAF7, is an assembly factor for human complex I.

          Abstract

          Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 subunits. One arm is embedded in the inner membrane with the other protruding ∼100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH and the primary electron acceptor FMN, and it provides a scaffold for seven iron-sulfur clusters that form an electron pathway linking FMN to the terminal electron acceptor, ubiquinone, which is bound in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, probably energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Complex I is put together from preassembled subcomplexes. Their compositions have been characterized partially, and at least 12 extrinsic assembly factor proteins are required for the assembly of the complex. One such factor, NDUFAF7, is predicted to belong to the family of S-adenosylmethionine-dependent methyltransferases characterized by the presence in their structures of a seven-β-strand protein fold. In the present study, the presence of NDUFAF7 in the mitochondrial matrix has been confirmed, and it has been demonstrated that it is a protein methylase that symmetrically dimethylates the ω- N G, N G′ atoms of residue Arg-85 in the NDUFS2 subunit of complex I. This methylation step occurs early in the assembly of complex I and probably stabilizes a 400-kDa subcomplex that forms the initial nucleus of the peripheral arm and its juncture with the membrane arm.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Computational method to predict mitochondrially imported proteins and their targeting sequences.

          Most of the proteins that are used in mitochondria are imported through the double membrane of the organelle. The information that guides the protein to mitochondria is contained in its sequence and structure, although no direct evidence can be obtained. In this article, discriminant analysis has been performed with 47 parameters and a large set of mitochondrial proteins extracted from the SwissProt database. A computational method that facilitates the analysis and objective prediction of mitochondrially imported proteins has been developed. If only the amino acid sequence is considered, 75-97% of the mitochondrial proteins studied have been predicted to be imported into mitochondria. Moreover, the existence of mitochondrial-targeting sequences is predicted in 76-94% of the analyzed mitochondrial precursor proteins. As a practical application, the number of unknown yeast open reading frames that might be mitochondrial proteins has been predicted, which revealed that many of them are clustered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of the entire respiratory complex I

            Complex I is the first and largest enzyme of the respiratory chain, playing a central role in cellular energy production by coupling electron transfer between NADH and ubiquinone to proton translocation. It is implicated in many common human neurodegenerative diseases. Here we report the first crystal structure of the entire, intact complex I (from T. thermophilus) at 3.3 Å resolution. The structure of the 536 kDa complex comprises 16 different subunits with 64 transmembrane helices and 9 Fe-S clusters. The core fold of subunit Nqo8 (NuoH/ND1) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, thus completing the fourth proton translocation pathway, in addition to the channels in three antiporter-like subunits. The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near cluster N2. Strikingly, the chamber is linked to the fourth channel by a “funnel” of charged residues. The link continues over the entire membrane domain as a remarkable flexible central axis of charged and polar residues. It likely plays a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone reaction chamber allows the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme.

              tRNAs are synthesized as immature precursors, and on their way to functional maturity, extra nucleotides at their 5' ends are removed by an endonuclease called RNase P. All RNase P enzymes characterized so far are composed of an RNA plus one or more proteins, and tRNA 5' end maturation is considered a universal ribozyme-catalyzed process. Using a combinatorial purification/proteomics approach, we identified the components of human mitochondrial RNase P and reconstituted the enzymatic activity from three recombinant proteins. We thereby demonstrate that human mitochondrial RNase P is a protein enzyme that does not require a trans-acting RNA component for catalysis. Moreover, the mitochondrial enzyme turns out to be an unexpected type of patchwork enzyme, composed of a tRNA methyltransferase, a short-chain dehydrogenase/reductase-family member, and a protein of hitherto unknown functional and evolutionary origin, possibly representing the enzyme's metallonuclease moiety. Apparently, animal mitochondria lost the seemingly ubiquitous RNA world remnant after reinventing RNase P from preexisting components.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (9650 Rockville Pike, Bethesda, MD 20814, U.S.A. )
                0021-9258
                1083-351X
                15 November 2013
                2 October 2013
                2 October 2013
                : 288
                : 46
                : 33016-33026
                Affiliations
                [1]From the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
                Author notes
                [2 ] To whom correspondence should be addressed. E-mail: walker@ 123456mrc-mbu.cam.ac.uk .
                [1]

                Recipient of a Medical Research Council Career Development Fellowship, Swiss National Fund Stipendium PBBSP3-130953, and a fellowship from the Swiss Novartis Foundation.

                Article
                M113.518803
                10.1074/jbc.M113.518803
                3829151
                24089531
                a1f8bd32-dd7f-4634-b356-804bf605c76b
                © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Unported License applies to Author Choice Articles

                History
                : 13 September 2013
                : 27 September 2013
                Categories
                Membrane Biology

                Biochemistry
                bioenergetics,electron transport,mitochondria,protein methylation,respiratory chain,assembly,complex i,dimethylarginine,methyltransferase

                Comments

                Comment on this article