1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retracted: Design and Proofreading of the English-Chinese Computer-Aided Translation System by the Neural Network

      retraction
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Design and Proofreading of the English-Chinese Computer-Aided Translation System by the Neural Network

          At present, complete machine translation (MT) cannot meet the needs of information communication and cultural exchange, and the speed of complete human translation is too slow. Therefore, if MT is used to assist in the process of English-Chinese translation, it can not only prove that machine learning (ML) can translate English to Chinese but also improve the translation efficiency and accuracy of translators through human-machine cooperation. The research on the mutual cooperation between ML and human translation has an important research significance for translation systems. An English-Chinese computer-aided translation (CAT) system is designed and proofread based on a neural network (NN) model. First, it gives a brief overview of CAT. Second, the related theory of the NN model is discussed. An English-Chinese CAT and proofreading system based on the recurrent neural network (RNN) is constructed. Finally, the translation accuracy and proofreading recognition rate of the translation files of 17 different projects under different models are studied and analyzed. The research results reveal that according to the different translation properties of different texts, the average accuracy rate of text translation under the RNN model is 93.96%, and the mean accuracy of text translation under the transformer model is 90.60%. The translation accuracy of the RNN model in the CAT system is 3.36% higher than that of the transformer model. The English-Chinese CAT system based on the RNN model has different proofreading results for sentence processing, sentence alignment, and inconsistency detection of translation files of different projects. Among them, the recognition rate for sentence alignment and the inconsistency detection of English-Chinese translation is high, and the expected effect is achieved. The design of the English-Chinese CAT and proofreading system based on the RNN can make the translation and proofreading be carried out simultaneously, which greatly improves the efficiency of translation work. Meanwhile, the above research methods can improve the problems encountered in the current English-Chinese translation, provide a path for the bilingual translation process, and have certain promotion prospects.
            Bookmark

            Author and article information

            Contributors
            Journal
            Comput Intell Neurosci
            Comput Intell Neurosci
            cin
            Computational Intelligence and Neuroscience
            Hindawi
            1687-5265
            1687-5273
            2023
            4 October 2023
            4 October 2023
            : 2023
            : 9753629
            Affiliations
            Article
            10.1155/2023/9753629
            10567274
            37829916
            a1fce495-0196-438a-a998-589b8a2d4795
            Copyright © 2023 Computational Intelligence and Neuroscience.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            History
            : 3 October 2023
            : 3 October 2023
            Categories
            Retraction

            Neurosciences
            Neurosciences

            Comments

            Comment on this article