2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries

      , , ,
      Free Radical Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.

          Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. Copyright © 2014 the American Physiological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth differentiation factor-9 is required during early ovarian folliculogenesis.

            Growth factors synthesized by ovarian somatic cells directly affect oocyte growth and function, but it is unclear whether oocyte-secreted factors play a reciprocal role in modulating somatic cell functions in vivo. During the functional analysis of members of the transforming growth factor-beta superfamily in mouse development, we have uncovered a new family member, growth differentiation factor-9 (GDF-9), which is required for ovarian folliculogenesis. GDF-9 messenger RNA is synthesized only in the oocyte from the primary one-layer follicle stage until after ovulation. Here we analyse ovaries from GDF-9-deficient female mice and demonstrate that primordial and primary one-layer follicles can be formed, but there is a block in follicular development beyond the primary one-layer follicle stage which leads to complete infertility. Oocyte growth and zona pellucida formation proceed normally, but other aspects of oocyte differentiation are compromised. Thus, GDF-9 is the first oocyte-derived growth factor required for somatic cell function in vivo.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Free radicals, reactive oxygen species, oxidative stress and its classification.

              Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Free Radical Biology and Medicine
                Free Radical Biology and Medicine
                Elsevier BV
                08915849
                February 2021
                February 2021
                : 163
                : 344-355
                Article
                10.1016/j.freeradbiomed.2020.12.434
                a204fa02-80c0-450e-8d29-49bf16385cde
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/


                Comments

                Comment on this article