10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning for Whole Slide Image Analysis: An Overview

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The widespread adoption of whole slide imaging has increased the demand for effective and efficient gigapixel image analysis. Deep learning is at the forefront of computer vision, showcasing significant improvements over previous methodologies on visual understanding. However, whole slide images have billions of pixels and suffer from high morphological heterogeneity as well as from different types of artifacts. Collectively, these impede the conventional use of deep learning. For the clinical translation of deep learning solutions to become a reality, these challenges need to be addressed. In this paper, we review work on the interdisciplinary attempt of training deep neural networks using whole slide images, and highlight the different ideas underlying these methodologies.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning

          Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD. We found that six of them-STK11, EGFR, FAT1, SETBP1, KRAS and TP53-can be predicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Learning for Computer Vision: A Brief Review

            Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Deep learning for visual understanding: A review

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                22 November 2019
                2019
                : 6
                : 264
                Affiliations
                [1] 1School of Computer Science, University of St Andrews , St Andrews, United Kingdom
                [2] 2School of Medicine, University of St Andrews , St Andrews, United Kingdom
                Author notes

                Edited by: Inti Zlobec, University of Bern, Switzerland

                Reviewed by: Pier Paolo Piccaluga, University of Bologna, Italy; Thomas Menter, University Hospital of Basel, Switzerland

                *Correspondence: Peter D. Caie pdc5@ 123456st-andrews.ac.uk

                This article was submitted to Pathology, a section of the journal Frontiers in Medicine

                †These authors have contributed equally to this work

                Article
                10.3389/fmed.2019.00264
                6882930
                31824952
                a206dbe5-0236-4346-94f0-ab18b8282ebf
                Copyright © 2019 Dimitriou, Arandjelović and Caie.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 June 2019
                : 29 October 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 53, Pages: 7, Words: 5225
                Categories
                Medicine
                Mini Review

                digital pathology,computer vision,oncology,cancer,machine learning,personalized pathology,image analysis

                Comments

                Comment on this article