40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCF β-TrCP, SCF Fbw7 and Trim17) and one deubiquitinase (e.g., USP9X), that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Cell death: critical control points.

          Programmed cell death is a distinct genetic and biochemical pathway essential to metazoans. An intact death pathway is required for successful embryonic development and the maintenance of normal tissue homeostasis. Apoptosis has proven to be tightly interwoven with other essential cell pathways. The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.

            Apoptosis is initiated when Bcl-2 and its prosurvival relatives are engaged by proapoptotic BH3-only proteins via interaction of its BH3 domain with a groove on the Bcl-2-like proteins. These interactions have been considered promiscuous, but our analysis of the affinity of eight BH3 peptides for five Bcl-2-like proteins has revealed that the interactions vary over 10,000-fold in affinity, and accordingly, only certain protein pairs associate inside cells. Bim and Puma potently engaged all the prosurvival proteins comparably. Bad, however, bound tightly to Bcl-2, Bcl-xL, and Bcl-w but only weakly to A1 and not to Mcl-1. Strikingly, Noxa bound only Mcl-1 and A1. In accord with their complementary binding, Bad and Noxa cooperated to induce potent killing. The results suggest that apoptosis relies on selective interactions between particular subsets of these proteins and that it should be feasible to discover BH3-mimetic drugs that inactivate specific prosurvival targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The glamour and gloom of glycogen synthase kinase-3.

              Glycogen synthase kinase-3 (GSK3) is now recognized as a key component of a surprisingly large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. These are used to control and direct the far-reaching influences of GSK3 on cellular structure, growth, motility and apoptosis. Dysregulation of GSK3 is linked to several prevalent pathological conditions, such as diabetes and/or insulin resistance, and Alzheimer's disease. Therefore, much effort is currently directed towards understanding the functions and control of GSK3, and identifying methods capable of diminishing the deleterious impact of GSK3 in pathological conditions.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                08 May 2014
                June 2014
                : 3
                : 2
                : 418-437
                Affiliations
                [1 ]Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France; E-Mails: barbara.mojsa@ 123456igmm.cnrs.fr (B.M.); irena.lassot@ 123456igmm.cnrs.fr (I.L.)
                [2 ]Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
                [3 ]Université Montpellier 1, 5 boulevard Henri IV, 34967 Montpellier cedex 2 France
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: solange.desagher@ 123456igmm.cnrs.fr ; Tel.: +33-4-3435-9676; Fax: +33-4-3435-9634.
                Article
                cells-03-00418
                10.3390/cells3020418
                4092850
                24814761
                a2070136-d146-43ab-9f82-6388ae171629
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 13 March 2014
                : 16 April 2014
                : 29 April 2014
                Categories
                Review

                mcl-1,ubiquitin,proteasome,apoptosis,phosphorylation,e3 ubiquitin-ligase,deubiquitinase

                Comments

                Comment on this article