11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microsurgical anatomy of the central lobe

      , , ,
      Journal of Neurosurgery
      Journal of Neurosurgery Publishing Group (JNSPG)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The central lobe consists of the pre- and postcentral gyri on the lateral surface and the paracentral lobule on the medial surface and corresponds to the sensorimotor cortex. The objective of the present study was to define the neural features, craniometric relationships, arterial supply, and venous drainage of the central lobe.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Independent association of extent of resection with survival in patients with malignant brain astrocytoma.

          With recent advances in the adjuvant treatment of malignant brain astrocytomas, it is increasingly debated whether extent of resection affects survival. In this study, the authors investigate this issue after primary and revision resection of these lesions. The authors retrospectively reviewed the cases of 1215 patients who underwent surgery for malignant brain astrocytomas (World Health Organization [WHO] Grade III or IV) at a single institution from 1996 to 2006. Patients with deep-seated or unresectable lesions were excluded. Based on MR imaging results obtained < 48 hours after surgery, gross-total resection (GTR) was defined as no residual enhancement, near-total resection (NTR) as having thin rim enhancement of the resection cavity only, and subtotal resection (STR) as having residual nodular enhancement. The independent association of extent of resection and subsequent survival was assessed via a multivariate proportional hazards regression analysis. Magnetic resonance imaging studies were available for review in 949 cases. The mean age and mean Karnofsky Performance Scale (KPS) score at time of surgery were 51 +/- 16 years and 80 +/- 10, respectively. Surgery consisted of primary resection in 549 patients (58%) and revision resection for tumor recurrence in 400 patients (42%). The lesion was WHO Grade IV in 700 patients (74%) and Grade III in 249 (26%); there were 167 astrocytomas and 82 mixed oligoastrocytoma. Among patients who underwent resection, GTR, NTR, and STR were achieved in 330 (35%), 388 (41%), and 231 cases (24%), respectively. Adjusting for factors associated with survival (for example, age, KPS score, Gliadel and/or temozolomide use, and subsequent resection), GTR versus NTR (p < 0.05) and NTR versus STR (p < 0.05) were independently associated with improved survival after both primary and revision resection of glioblastoma multiforme (GBM). For primary GBM resection, the median survival after GTR, NTR, and STR was 13, 11, and 8 months, respectively. After revision resection, the median survival after GTR, NTR, and STR was 11, 9, and 5 months, respectively. Adjusting for factors associated with survival for WHO Grade III astrocytoma (age, KPS score, and revision resection), GTR versus STR (p < 0.05) was associated with improved survival. Gross-total resection versus NTR was not associated with an independent survival benefit in patients with WHO Grade III astrocytomas. The median survival after primary resection of WHO Grade III (mixed oligoastrocytomas excluded) for GTR, NTR, and STR was 58, 46, and 34 months, respectively. In the authors' experience with both primary and secondary resection of malignant brain astrocytomas, increasing extent of resection was associated with improved survival independent of age, degree of disability, WHO grade, or subsequent treatment modalities used. The maximum extent of resection should be safely attempted while minimizing the risk of surgically induced neurological injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas.

            It remains unknown whether the extent of surgical resection affects survival or disease progression in patients with supratentorial low-grade gliomas. We conducted a retrospective cohort study (n = 170) between 1996 and 2007 at a single institution to determine whether increasing extent of surgical resection was associated with improved progression-free survival (PFS) and overall survival (OS). Surgical resection of gliomas defined as gross total resection (GTR) (complete resection of the preoperative fluid-attenuated inversion recovery signal abnormality), near total resection (NTR) (<3-mm thin residual fluid-attenuated inversion recovery signal abnormality around the rim of the resection cavity only), or subtotal resection (STR) (residual nodular fluid-attenuated inversion recovery signal abnormality) based on magnetic resonance imaging performed less than 48 hours after surgery. Our main outcome measures were OS, PFS, and malignant degeneration-free survival (conversion to high-grade glioma). One hundred thirty-two primary and 38 revision resections were performed for low-grade astrocytomas (n = 93) or oligodendrogliomas (n = 77). GTR, NTR, and STR were achieved in 65 (38%), 39 (23%), and 66 (39%) cases, respectively. GTR versus STR was independently associated with increased OS (hazard ratio, 0.36; 95% confidence interval, 0.16-0.84; P = 0.017) and PFS (HR, 0.56; 95% confidence interval, 0.32-0.98; P = 0.043) and a trend of increased malignant degeneration-free survival (hazard ratio, 0.46; 95% confidence interval, 0.20-1.03; P = 0.060). NTR versus STR was not independently associated with improved OS, PFS, or malignant degeneration-free survival. Five-year OS after GTR, NTR, and STR was 95, 80, 70%, respectively, and 10-year OS was 76, 57, and 49%, respectively. After GTR, NTR, and STR, median time to tumor progression was 7.0, 4.0, and 3.5 years, respectively. Median time to malignant degeneration after GTR, NTR, and STR was 12.5, 5.8, and 7 years, respectively. GTR was associated with a delay in tumor progression and malignant degeneration as well as improved OS independent of age, degree of disability, histological subtype, or revision versus primary resection. GTR should be safely attempted when not limited by eloquent cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article.

              Extent of resection (EOR) has been shown to be an important prognostic factor for survival in patients undergoing initial resection of glioblastoma (GBM), but the significance of EOR at repeat craniotomy for recurrence remains unclear. In this study the authors investigate the impact of EOR at initial and repeat resection of GBM on overall survival. Medical records were reviewed for all patients undergoing craniotomy for GBM at the University of California San Francisco Medical Center from January 1, 2005, through August 15, 2009. Patients who had a second craniotomy for pathologically confirmed recurrence following radiation and chemotherapy were evaluated. Volumetric EOR was measured and classified as gross-total resection (GTR, > 95% by volume) or subtotal resection (STR, ≤ 95% by volume) after independent radiological review. Overall survival was compared between groups using univariate and multivariate analysis accounting for known prognostic factors, including age, eloquent location, Karnofsky Performance Status (KPS), and adjuvant therapies. Multiple resections were performed in 107 patients. Fifty-two patients had initial GTR, of whom 31 (60%) had GTR at recurrence, with a median survival of 20.4 months (standard error [SE] 1.0 months), and 21 (40%) had STR at recurrence, with a median survival of 18.4 months (SE 0.5 months) (difference not statistically significant). Initial STR was performed in 55 patients, of whom 26 (47%) had GTR at recurrence, with a median survival of 19.0 months (SE 1.2 months), and 29 (53%) had STR, with a median survival of 15.9 months (SE 1.2 months) (p = 0.004). A Cox proportional hazards model was constructed demonstrating that age (HR 1.03, p = 0.004), KPS score at recurrence (HR 2.4, p = 0.02), and EOR at repeat resection (HR 0.62, p = 0.02) were independent predictors of survival. Extent of initial resection was not a statistically significant factor (p = 0.13) when repeat EOR was included in the model, suggesting that GTR at second craniotomy could overcome the effect of an initial STR. Extent of resection at recurrence is an important predictor of overall survival. If GTR is achieved at recurrence, overall survival is maximized regardless of initial EOR, suggesting that patients with initial STR may benefit from surgery with a GTR at recurrence.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgery
                Journal of Neurosurgery
                Journal of Neurosurgery Publishing Group (JNSPG)
                0022-3085
                March 2015
                March 2015
                : 122
                : 3
                : 483-498
                Article
                10.3171/2014.11.JNS14315
                25555079
                a20a7853-981e-478a-93dd-3c8fa0f67f91
                © 2015
                History

                Comments

                Comment on this article