26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative genomics of European avian pathogenic E. Coli (APEC)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. However, the diversity between isolates remains poorly understood. Here, a total of 272 APEC isolates collected from the United Kingdom (UK), Italy and Germany were characterised using multiplex polymerase chain reactions (PCRs) targeting 22 equally weighted factors covering virulence genes, R-type and phylogroup. Following these analysis, 95 of the selected strains were further analysed using Whole Genome Sequencing (WGS).

          Results

          The most prevalent phylogroups were B2 (47%) and A1 (22%), although there were national differences with Germany presenting group B2 (35.3%), Italy presenting group A1 (53.3%) and UK presenting group B2 (56.1%) as the most prevalent. R-type R1 was the most frequent type (55%) among APEC, but multiple R-types were also frequent (26.8%). Following compilation of all the PCR data which covered a total of 15 virulence genes, it was possible to build a similarity tree using each PCR result unweighted to produce 9 distinct groups. The average number of virulence genes was 6–8 per isolate, but no positive association was found between phylogroup and number or type of virulence genes. A total of 95 isolates representing each of these 9 groupings were genome sequenced and analysed for in silico serotype, Multilocus Sequence Typing (MLST), and antimicrobial resistance (AMR). The UK isolates showed the greatest variability in terms of serotype and MLST compared with German and Italian isolates, whereas the lowest prevalence of AMR was found for German isolates. Similarity trees were compiled using sequencing data and notably single nucleotide polymorphism data generated ten distinct geno-groups. The frequency of geno-groups across Europe comprised 26.3% belonging to Group 8 representing serogroups O2, O4, O18 and MLST types ST95, ST140, ST141, ST428, ST1618 and others, 18.9% belonging to Group 1 (serogroups O78 and MLST types ST23, ST2230), 15.8% belonging to Group 10 (serogroups O8, O45, O91, O125ab and variable MLST types), 14.7% belonging to Group 7 (serogroups O4, O24, O35, O53, O161 and MLST type ST117) and 13.7% belonging to Group 9 (serogroups O1, O16, O181 and others and MLST types ST10, ST48 and others). The other groups (2, 3, 4, 5 and 6) each contained relatively few strains.

          However, for some of the genogroups (e.g. groups 6 and 7) partial overlap with SNPs grouping and PCR grouping (matching PCR groups 8 (13 isolates on 22) and 1 (14 isolates on 16) were observable). However, it was not possible to obtain a clear correlation between genogroups and unweighted PCR groupings. This may be due to the genome plasticity of E. coli that enables strains to carry the same virulence factors even if the overall genotype is substantially different.

          Conclusions

          The conclusion to be drawn from the lack of correlations is that firstly, APEC are very diverse and secondly, it is not possible to rely on any one or more basic molecular or phenotypic tests to define APEC with clarity, reaffirming the need for whole genome analysis approaches which we describe here.

          This study highlights the presence of previously unreported serotypes and MLSTs for APEC in Europe. Moreover, it is a first step on a cautious reconsideration of the merits of classical identification criteria such as R typing, phylogrouping and serotyping.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12864-016-3289-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool.

          To identify traits that predict avian pathogenic Escherichia coli (APEC) virulence, 124 avian E. coli isolates of known pathogenicity and serogroup were subjected to virulence genotyping and phylogenetic typing. The results were analyzed by multiple-correspondence analysis. From this analysis, five genes carried by plasmids were identified as being the most significantly associated with highly pathogenic APEC strains: iutA, hlyF, iss, iroN, and ompT. A multiplex PCR panel targeting these five genes was used to screen a collection of 994 avian E. coli isolates. APEC isolates were clearly distinguished from the avian fecal E. coli isolates by their possession of these genes, suggesting that this pentaplex panel has diagnostic applications and underscoring the close association between avian E. coli virulence and the possession of ColV plasmids. Also, the sharp demarcation between APEC isolates and avian fecal E. coli isolates in their plasmid-associated virulence gene content suggests that APEC isolates are well equipped for a pathogenic lifestyle, which is contrary to the widely held belief that most APEC isolates are opportunistic pathogens. Regardless, APEC isolates remain an important problem for poultry producers and a potential concern for public health professionals, as growing evidence suggests a possible role for APEC in human disease. Thus, the pentaplex panel described here may be useful in detecting APEC-like strains occurring in poultry production, along the food chain, and in human disease. This panel may be helpful toward clarifying potential roles of APEC in human disease, ascertaining the source of APEC in animal outbreaks, and identifying effective targets of avian colibacillosis control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A code for transcription initiation in mammalian genomes.

            Genome-wide detection of transcription start sites (TSSs) has revealed that RNA Polymerase II transcription initiates at millions of positions in mammalian genomes. Most core promoters do not have a single TSS, but an array of closely located TSSs with different rates of initiation. As a rule, genes have more than one such core promoter; however, defining the boundaries between core promoters is not trivial. These discoveries prompt a re-evaluation of our models for transcription initiation. We describe a new framework for understanding the organization of transcription initiation. We show that initiation events are clustered on the chromosomes at multiple scales-clusters within clusters-indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each nucleotide with a remarkable 91% accuracy, implying the existence of a DNA code that determines TSS selection. Conversely, the total expression strength of such clusters is only partially determined by the local DNA sequence. Thus, the overall control of transcription can be understood as a combination of large- and small-scale effects; the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli.

              The 72 member strains of the Escherichia coli Reference collection were assessed as to genotype for 31 putative extraintestinal virulence factor (VF) genes and DNA sequence for papA, the P fimbrial structural subunit gene. Although most VFs were concentrated in phylogenetic group B2 or jointly in groups B2 and D, others were concentrated primarily in group D, were broadly distributed (without group-specific associations), and/or occurred only outside of group B2. Statistical correlations among VFs suggested linkage on pathogenicity-associated islands or plasmids. Isolates from humans and nonhuman primates had more VFs than did isolates from other animals. Sequence diversity was minimal within each F type-specific papA allele group but was substantial among different papA allele groups. The distribution patterns of papA variants and other VFs suggested multiple horizontal transfer events. These findings provide new insights into the phylogenetic origins of extraintestinal VFs in E. coli.
                Bookmark

                Author and article information

                Contributors
                guidocordoni@yahoo.it
                m.j.woodward@reading.ac.uk
                h.wu@surrey.ac.uk
                malanazi@hotmail.com
                tim.wallis@ridgewaybiologicals.co.uk
                R.Laragione@surrey.ac.uk
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                22 November 2016
                22 November 2016
                2016
                : 17
                : 960
                Affiliations
                [1 ]Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL UK
                [2 ]Department of Food and Nutritional Sciences, University of Reading, Reading, UK
                [3 ]Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
                [4 ]Ridgeway Biologicals Ltd, Units 1-3 Old Station Business Park, Compton, Berkshire RG20 6NE UK
                Article
                3289
                10.1186/s12864-016-3289-7
                5120500
                27875980
                a2128904-dca4-4b46-be0e-678924eac2c3
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 22 March 2016
                : 14 November 2016
                Funding
                Funded by: Partially funded by Zoetis
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Genetics
                avian pathogenic e. coli,virulence factors analysis,multiplex pcr,comparative genomics

                Comments

                Comment on this article