31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cancer stem cell ( CSC) model has recently been approached also in renal cell carcinoma (RCC). A few populations of putative renal tumor-initiating cells (TICs) were identified, but they are indifferently understood; however, the first and most thoroughly investigated are CD105-positive CSCs. The article presents a detailed comparison of all renal CSC-like populations identified by now as well as their presumable origin. Hypoxic activation of hypoxia-inducible factors (HIFs) contributes to tumor aggressiveness by multiple molecular pathways, including the governance of immature stem cell-like phenotype and related epithelial-to-mesenchymal transition (EMT)/de-differentiation, and, as a result, poor prognosis. Due to intrinsic von Hippel-Lindau protein (pVHL) loss of function, clear-cell RCC (ccRCC) develops unique pathological intra-cellular pseudo-hypoxic phenotype with a constant HIF activation, regardless of oxygen level. Despite satisfactory evidence concerning pseudo-hypoxia importance in RCC biology, its influence on putative renal CSC-like largely remains unknown. Thus, the article discusses a current knowledge of HIF-1α/2α signaling pathways in the promotion of undifferentiated tumor phenotype in general, including some experimental findings specific for pseudo-hypoxic ccRCC, mostly dependent from HIF-2α oncogenic functions. Existing gaps in understanding both putative renal CSCs and their potential connection with hypoxia need to be filled in order to propose breakthrough strategies for RCC treatment.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

            HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia in cancer: significance and impact on clinical outcome.

              Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a pivotal factor of the tumor (patho-)physiome since it can promote tumor progression and resistance to therapy. Hypoxia represents a "Janus face" in tumor biology because (a) it is associated with restrained proliferation, differentiation, necrosis or apoptosis, and (b) it can also lead to the development of an aggressive phenotype. Independent of standard prognostic factors, such as tumor stage and nodal status, hypoxia has been suggested as an adverse prognostic factor for patient outcome. Studies of tumor hypoxia involving the direct assessment of the oxygenation status have suggested worse disease-free survival for patients with hypoxic cervical cancers or soft tissue sarcomas. In head & neck cancers the studies suggest that hypoxia is prognostic for survival and local control. Technical limitations of the direct O(2) sensing technique have prompted the use of surrogate markers for tumor hypoxia, such as hypoxia-related endogenous proteins (e.g., HIF-1alpha, GLUT-1, CA IX) or exogenous bioreductive drugs. In many - albeit not in all - studies endogenous markers showed prognostic significance for patient outcome. The prognostic relevance of exogenous markers, however, appears to be limited. Noninvasive assessment of hypoxia using imaging techniques can be achieved with PET or SPECT detection of radiolabeled tracers or with MRI techniques (e.g., BOLD). Clinical experience with these methods regarding patient prognosis is so far only limited. In the clinical studies performed up until now, the lack of standardized treatment protocols, inconsistencies of the endpoints characterizing the oxygenation status and methodological differences (e.g., different immunohistochemical staining procedures) may compromise the power of the prognostic parameter used.
                Bookmark

                Author and article information

                Contributors
                +48-261-817-172 , anna.czarnecka@gmail.com
                Journal
                Stem Cell Rev
                Stem Cell Rev
                Stem Cell Reviews
                Springer US (New York )
                1550-8943
                1558-6804
                26 July 2015
                26 July 2015
                2015
                : 11
                : 6
                : 919-943
                Affiliations
                [ ]Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141 Warsaw, Poland
                [ ]School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
                [ ]Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
                [ ]Emory School of Medicine, Atlanta, GA USA
                [ ]Department of General Surgery and Transplantology, Medical University of Warsaw, Warsaw, Poland
                [ ]Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
                [ ]Department of Otolaryngology, Czerniakowski Hospital, Medical University of Warsaw, Warsaw, Poland
                [ ]Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
                Article
                9611
                10.1007/s12015-015-9611-y
                4653234
                26210994
                a217d711-2667-4d01-867e-451841cf7c9c
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media New York 2015

                Molecular medicine
                renal cancer,cancer stem cells,hypoxia-inducible factors (hif-1α, hif-2α),von hippel-lindau protein (pvhl),epithelial-to-mesenchymal transition

                Comments

                Comment on this article