1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

          To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.

            Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.

              Intravenous thrombolysis with alteplase is the only approved treatment for acute ischemic stroke, but its efficacy and safety when administered more than 3 hours after the onset of symptoms have not been established. We tested the efficacy and safety of alteplase administered between 3 and 4.5 hours after the onset of a stroke. After exclusion of patients with a brain hemorrhage or major infarction, as detected on a computed tomographic scan, we randomly assigned patients with acute ischemic stroke in a 1:1 double-blind fashion to receive treatment with intravenous alteplase (0.9 mg per kilogram of body weight) or placebo. The primary end point was disability at 90 days, dichotomized as a favorable outcome (a score of 0 or 1 on the modified Rankin scale, which has a range of 0 to 6, with 0 indicating no symptoms at all and 6 indicating death) or an unfavorable outcome (a score of 2 to 6 on the modified Rankin scale). The secondary end point was a global outcome analysis of four neurologic and disability scores combined. Safety end points included death, symptomatic intracranial hemorrhage, and other serious adverse events. We enrolled a total of 821 patients in the study and randomly assigned 418 to the alteplase group and 403 to the placebo group. The median time for the administration of alteplase was 3 hours 59 minutes. More patients had a favorable outcome with alteplase than with placebo (52.4% vs. 45.2%; odds ratio, 1.34; 95% confidence interval [CI], 1.02 to 1.76; P=0.04). In the global analysis, the outcome was also improved with alteplase as compared with placebo (odds ratio, 1.28; 95% CI, 1.00 to 1.65; P<0.05). The incidence of intracranial hemorrhage was higher with alteplase than with placebo (for any intracranial hemorrhage, 27.0% vs. 17.6%; P=0.001; for symptomatic intracranial hemorrhage, 2.4% vs. 0.2%; P=0.008). Mortality did not differ significantly between the alteplase and placebo groups (7.7% and 8.4%, respectively; P=0.68). There was no significant difference in the rate of other serious adverse events. As compared with placebo, intravenous alteplase administered between 3 and 4.5 hours after the onset of symptoms significantly improved clinical outcomes in patients with acute ischemic stroke; alteplase was more frequently associated with symptomatic intracranial hemorrhage. (ClinicalTrials.gov number, NCT00153036.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                European Journal of Medicinal Chemistry
                European Journal of Medicinal Chemistry
                Elsevier BV
                02235234
                January 2021
                January 2021
                : 210
                : 113061
                Article
                10.1016/j.ejmech.2020.113061
                33310289
                a21acf09-df12-4099-8938-f7583b6a78b0
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article