13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of atorvastatin on high density lipoprotein cholesterol and its relationship with coronary events: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) Study.

      Current medical research and opinion
      Adult, Aged, Analysis of Variance, Anticholesteremic Agents, pharmacology, Cholesterol, HDL, blood, Coronary Disease, prevention & control, Female, Greece, Heptanoic Acids, Humans, Male, Middle Aged, National Health Programs, Proportional Hazards Models, Pyrroles, Treatment Outcome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To investigate the relationship between changes in high density lipoprotein cholesterol(HDL-C) levels after statin treatment and the risk for coronary heart disease (CHD)-related events in the secondary CHD prevention GREek Atorvastatin and Coronary heart disease Evaluation (GREACE) Study. These findings suggested that dose titration with atorvastatin (10-80 mg/day, mean 24 mg/day)achieves the National Cholesterol Educational Program treatment goals and significantly reduces morbidity and mortality, in comparison to usual care. Analysis of variance was used to assess the effect of atorvastatin on HDL-C over time (up to 48 months) in 1600 CHD patients. The time-dependent multivariate Cox predictive model,involving backward stepwise logistic regression,was used to evaluate the relation between coronary events and HDL-C changes. The mean increase in HDL-C levels during the study was 7%. All doses of atorvastatin significantly increased HDL-C levels. Increases were greater in men (7.8 vs 6.1%; p = 0.02), in combined hyperlipidaemia (7.9 vs 6.4% for hypercholesterolaemia; p = 0.04), and in the lower baseline HDL-C quartile (9.2 vs 5.3%, 1st vs 4th quartile; p = 0.001). After adjustment for 24 predictors of coronary events, multivariate analysis revealed a Hazards Ratio of 0.85 (95% confidence interval 0.76-0.94; p = 0.002) for every 4 mg/dL(0.1 mmol/L) increase in HDL-C. There was a significant beneficial effect on HDL-C levels across the dose range of atorvastatin. Clinical outcomes in the structured care arm of GREACE were determined in part by the extent of atorvastatin-induced HDL-C increase. This effect was independent from benefit induced by low density lipoprotein cholesterol (LDL-C)reduction, suggesting that the CHD risk reduction associated with a rise in a low HDL-C at baseline remains significant under aggressive (-46%) LDL-C lowering conditions. However, the relationship between HDL-C and vascular risk may be weaker when LDL-C levels are aggressively lowered.

          Related collections

          Author and article information

          Comments

          Comment on this article