63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ecological and evolutionary legacy of megafauna extinctions : Anachronisms and megafauna interactions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For hundreds of millions of years, large vertebrates (megafauna) have inhabited most of the ecosystems on our planet. During the late Quaternary, notably during the Late Pleistocene and the early Holocene, Earth experienced a rapid extinction of large, terrestrial vertebrates. While much attention has been paid to understanding the causes of this massive megafauna extinction, less attention has been given to understanding the impacts of loss of megafauna on other organisms with whom they interacted. In this review, we discuss how the loss of megafauna disrupted and reshaped ecological interactions, and explore the ecological consequences of the ongoing decline of large vertebrates. Numerous late Quaternary extinct species of predators, parasites, commensals and mutualistic partners were associated with megafauna and were probably lost due to their strict dependence upon them (co-extinctions). Moreover, many extant species have megafauna-adapted traits that provided evolutionary benefits under past megafauna-rich conditions, but are now of no or limited use (anachronisms). Morphological evolution and behavioural changes allowed some of these species partially to overcome the absence of megafauna. Although the extinction of megafauna led to a number of co-extinction events, several species that likely co-evolved with megafauna established new interactions with humans and their domestic animals. Species that were highly specialized in interactions with megafauna, such as large predators, specialized parasites, and large commensalists (e.g. scavengers, dung beetles), and could not adapt to new hosts or prey were more likely to die out. Partners that were less megafauna dependent persisted because of behavioural plasticity or by shifting their dependency to humans via domestication, facilitation or pathogen spill-over, or through interactions with domestic megafauna. We argue that the ongoing extinction of the extant megafauna in the Anthropocene will catalyse another wave of co-extinctions due to the enormous diversity of key ecological interactions and functional roles provided by the megafauna.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing the causes of late Pleistocene extinctions on the continents.

          One of the great debates about extinction is whether humans or climatic change caused the demise of the Pleistocene megafauna. Evidence from paleontology, climatology, archaeology, and ecology now supports the idea that humans contributed to extinction on some continents, but human hunting was not solely responsible for the pattern of extinction everywhere. Instead, evidence suggests that the intersection of human impacts with pronounced climatic change drove the precise timing and geography of extinction in the Northern Hemisphere. The story from the Southern Hemisphere is still unfolding. New evidence from Australia supports the view that humans helped cause extinctions there, but the correlation with climate is weak or contested. Firmer chronologies, more realistic ecological models, and regional paleoecological insights still are needed to understand details of the worldwide extinction pattern and the population dynamics of the species involved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of long-distance seed dispersal.

            Growing recognition of the importance of long-distance dispersal (LDD) of plant seeds for various ecological and evolutionary processes has led to an upsurge of research into the mechanisms underlying LDD. We summarize these findings by formulating six generalizations stating that LDD is generally more common in open terrestrial landscapes, and is typically driven by large and migratory animals, extreme meteorological phenomena, ocean currents and human transportation, each transporting a variety of seed morphologies. LDD is often associated with unusual behavior of the standard vector inferred from plant dispersal morphology, or mediated by nonstandard vectors. To advance our understanding of LDD, we advocate a vector-based research approach that identifies the significant LDD vectors and quantifies how environmental conditions modify their actions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Megaherbivores

                Bookmark

                Author and article information

                Journal
                Biological Reviews
                Biol Rev
                Wiley-Blackwell
                14647931
                October 09 2017
                :
                :
                Article
                10.1111/brv.12374
                28990321
                a2402469-2fe9-4b1d-a247-b5ebbd85186f
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article