30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteochemometric modeling of HIV protease susceptibility

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A major obstacle in treatment of HIV is the ability of the virus to mutate rapidly into drug-resistant variants. A method for predicting the susceptibility of mutated HIV strains to antiviral agents would provide substantial clinical benefit as well as facilitate the development of new candidate drugs. Therefore, we used proteochemometrics to model the susceptibility of HIV to protease inhibitors in current use, utilizing descriptions of the physico-chemical properties of mutated HIV proteases and 3D structural property descriptions for the protease inhibitors. The descriptions were correlated to the susceptibility data of 828 unique HIV protease variants for seven protease inhibitors in current use; the data set comprised 4792 protease-inhibitor combinations.

          Results

          The model provided excellent predictability ( R 2 = 0.92, Q 2 = 0.87) and identified general and specific features of drug resistance. The model's predictive ability was verified by external prediction in which the susceptibilities to each one of the seven inhibitors were omitted from the data set, one inhibitor at a time, and the data for the six remaining compounds were used to create new models. This analysis showed that the over all predictive ability for the omitted inhibitors was Q 2 inhibitors = 0.72.

          Conclusion

          Our results show that a proteochemometric approach can provide generalized susceptibility predictions for new inhibitors. Our proteochemometric model can directly analyze inhibitor-protease interactions and facilitate treatment selection based on viral genotype. The model is available for public use, and is located at HIV Drug Research Centre.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Better Bootstrap Confidence Intervals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids.

            In this study 87 amino acids (AA.s) have been characterized by 26 physicochemical descriptor variables. These descriptor variables include experimentally determined retention values in seven thin-layer chromatography (TLC) systems, three nuclear magnetic resonance (NMR) shift variables, and 16 calculated variables, namely six semiempirical molecular orbital indices, total, polar, and nonpolar surface area, van der Waals volume of the side chain, log P, molecular weight, and four indicator variables describing hydrogen bond donor and acceptor properties, and side chain charge. In the present study, the data from a previous characterization of 55 AA.s from our laboratory have been extended with data for 32 additional AA.s and 14 new descriptor variables. The new 32 AA.s were selected to represent both intermediate and more extreme physicochemical properties, compared to the 20 coded AA.s. The new extended and updated principal property scales, the z-scales, were calculated and aligned to previously reported z(old)-scales. The appropriateness of the extended z-scales were validated by the use in quantitative sequence-activity modeling (QSAM) of 89 elastase substrate analogues and in a QSAM of 29 neurotensin analogues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors.

              Traditional methods for performing 3D-QSAR rely upon an alignment step that is often time-consuming and can introduce user bias, the resultant model being dependent upon and sensitive to the alignment used. There are several methods which overcome this problem, but in general the necessary transformations prevent a simple interpretation of the resultant models in the original descriptor space (i.e. 3D molecular coordinates). Here we present a novel class of molecular descriptors which we have termed GRid-INdependent Descriptors (GRIND). They are derived in such a way as to be highly relevant for describing biological properties of compounds while being alignment-independent, chemically interpretable, and easy to compute. GRIND are obtained starting from a set of molecular interaction fields, computed by the program GRID or by other programs. The procedure for computing the descriptors involves a first step, in which the fields are simplified, and a second step, in which the results are encoded into alignment-independent variables using a particular type of autocorrelation transform. The molecular descriptors so obtained can be used to obtain graphical diagrams called "correlograms" and can be used in different chemometric analyses, such as principal component analysis or partial least-squares. An important feature of GRIND is that, with the use of appropriate software, the original descriptors (molecular interaction fields) can be regenerated from the autocorrelation transform and, thus, the results of the analysis represented graphically, together with the original molecular structures, in 3D plots. In this respect, the article introduces the program ALMOND, a software package developed in our group for the computation, analysis, and interpretation of GRIND. The use of the methodology is illustrated using some examples from the field of 3D-QSAR. Highly predictive and interpretable models are obtained showing the promising potential of the novel descriptors in drug design.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2008
                10 April 2008
                : 9
                : 181
                Affiliations
                [1 ]Department of Pharmaceutical Pharmacology, Uppsala University, SE-751 24, Sweden
                Article
                1471-2105-9-181
                10.1186/1471-2105-9-181
                2375133
                18402661
                a241fd26-266d-46d5-bb35-fcf95edc6187
                Copyright © 2008 Lapins et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 December 2007
                : 10 April 2008
                Categories
                Research Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article