Blog
About


  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The biological impacts of ingested radioactive materials on the pale grass blue butterfly

1, 1, 1, 2, a,1

Scientific Reports

Nature Publishing Group

4027884

10.1038/srep04946

Read Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

      Related collections

      Most cited references 19

      • Record: found
      • Abstract: found
      • Article: not found

      Abundance of birds in Fukushima as judged from Chernobyl.

      The effects of radiation on abundance of common birds in Fukushima can be assessed from the effects of radiation in Chernobyl. Abundance of birds was negatively related to radiation, with a significant difference between Fukushima and Chernobyl. Analysis of 14 species common to the two areas revealed a negative effect of radiation on abundance, differing between areas and species. The relationship between abundance and radiation was more strongly negative in Fukushima than in Chernobyl for the same 14 species, demonstrating a negative consequence of radiation for birds immediately after the accident on 11 March 2011 during the main breeding season in March-July, when individuals work close to their maximum sustainable level. Copyright © 2012 Elsevier Ltd. All rights reserved.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The effects of natural variation in background radioactivity on humans, animals and other organisms.

        Natural levels of radioactivity on the Earth vary by more than a thousand-fold; this spatial heterogeneity may suffice to create heterogeneous effects on physiology, mutation and selection. We review the literature on the relationship between variation in natural levels of radioactivity and evolution. First, we consider the effects of natural levels of radiation on mutations, DNA repair and genetics. A total of 46 studies with 373 effect size estimates revealed a small, but highly significant mean effect that was independent of adjustment for publication bias. Second, we found different mean effect sizes when studies were based on broad categories like physiology, immunology and disease frequency; mean weighted effect sizes were larger for studies of plants than animals, and larger in studies conducted in areas with higher levels of radiation. Third, these negative effects of radiation on mutations, immunology and life history are inconsistent with a general role of hormetic positive effects of radiation on living organisms. Fourth, we reviewed studies of radiation resistance among taxa. These studies suggest that current levels of natural radioactivity may affect mutational input and thereby the genetic constitution and composition of natural populations. Susceptibility to radiation varied among taxa, and several studies provided evidence of differences in susceptibility among populations or strains. Crucially, however, these studies are few and scattered, suggesting that a concerted effort to address this lack of research should be made. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Fukushima nuclear accident and the pale grass blue butterfly: evaluating biological effects of long-term low-dose exposures

          Background On August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers. Results The following points were clarified. (1) There are many advantages to using the pale grass blue butterfly as an indicator species. (2) The forewings of the individuals collected in Fukushima were significantly smaller than in the northern and southern localities. (3) We observed growth retardation in the butterflies from the Fukushima area. (4) The aberrant colour patterns in the butterflies obtained in the Fukushima area were different from the colour patterns induced by temperature and sibling crosses but similar to those induced by external and internal exposures to the artificial radionuclides and by a chemical mutagen, suggesting that genetic mutations caused the aberrations. (5) This species of butterfly has been plentiful in Fukushima area for at least half a century. We here present specimens collected from Fukushima Prefecture before the accident. (6) Mutation accumulation was detected by the increase in the abnormality rates from May 2011 to September 2011. (7) The abnormal traits were heritable. (8) Our sampling localities were not affected by the tsunami. (9) We used a high enough number of samples to obtain statistically significant results. (10) The standard rearing method was followed, producing normal adults in the control groups. (11) The exposure experiments successfully reproduced the results of the field work. This species of butterfly is vulnerable to long-term low-dose internal and external exposures; however, insect cells are known to be resistant to short-term high-dose irradiation. This discrepancy is reconcilable based on the differences in the experimental conditions. Conclusions We are just beginning to understand the biological effects of long-term low-dose exposures in animals. Further research is necessary to accurately assess the possible biological effects of the accident.
            Bookmark

            Author and article information

            Affiliations
            [1]The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science
            [2]Instrumental Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
            Author notes
            Journal
            Sci Rep
            Sci Rep
            Scientific Reports
            Nature Publishing Group
            2045-2322
            15 May 2014
            2014
            : 4
            Copyright © 2014, Macmillan Publishers Limited. All rights reserved

            This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images in this article are included in the article's Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

            Categories
            Article
            ScienceOpen disciplines:

            Comments

            Comment on this article

            Register to benefit from advanced discovery features on more than 34,000,000 articles

            Already registered?

            Email*:
            Password*: