7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing practices (GMPs) and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone.

          Treatment with isolated allogeneic mesenchymal cells has the potential to enhance the therapeutic effects of conventional bone marrow transplantation in patients with genetic disorders affecting mesenchymal tissues, including bone, cartilage, and muscle. To demonstrate the feasibility of mesenchymal cell therapy and to gain insight into the transplant biology of these cells, we used gene-marked, donor marrow-derived mesenchymal cells to treat six children who had undergone standard bone marrow transplantation for severe osteogenesis imperfecta. Each child received two infusions of the allogeneic cells. Five of six patients showed engraftment in one or more sites, including bone, skin, and marrow stroma, and had an acceleration of growth velocity during the first 6 mo postinfusion. This improvement ranged from 60% to 94% (median, 70%) of the predicted median values for age- and sex-matched unaffected children, compared with 0% to 40% (median, 20%) over the 6 mo immediately preceding the infusions. There was no clinically significant toxicity except for an urticarial rash in one patient just after the second infusion. Failure to detect engraftment of cells expressing the neomycin phosphotransferase marker gene suggested the potential for immune attack against therapeutic cells expressing a foreign protein. Thus, allogeneic mesenchymal cells offer feasible posttransplantation therapy for osteogenesis imperfecta and likely other disorders originating in mesenchymal precursors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods.

            Quality assurance is becoming increasingly important. Good laboratory practice (GLP) and good manufacturing practice (GMP) are now established standards. The biomedical field aims at an increasing reliance on the use of in vitro methods. Cell and tissue culture methods are generally fast, cheap, reproducible and reduce the use of experimental animals. Good cell culture practice (GCCP) is an attempt to develop a common standard for in vitro methods. The implementation of the use of chemically defined media is part of the GCCP. This will decrease the dependence on animal serum, a supplement with an undefined and variable composition. Defined media supplements are commercially available for some cell types. However, information on the formulation by the companies is often limited and such supplements can therefore not be regarded as completely defined. The development of defined media is difficult and often takes place in isolation. A workshop was organised in 2009 in Copenhagen to discuss strategies to improve the development and use of serum-free defined media. In this report, the results from the meeting are discussed and the formulation of a basic serum-free medium is suggested. Furthermore, recommendations are provided to improve information exchange on newly developed serum-free media. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells.

              Mesenchymal stem cells (MSCs) are multipotent cells defined by multilineage potential, ease to gene modification, and immunosuppressive ability, thus holding promise for tissue engineering, gene therapy, and immunotherapy. They exhibit a unique in vitro expansion capacity, which, however, does not compensate for the very low percentage in their niches given the vast numbers of cells required for the relative studies. Taking into consideration the lack of a uniform approach for MSC isolation and expansion, we attempted in this study, by comparing various culture conditions, to identify the optimal protocol for the large-scale production of MSCs while maintaining their multilineage and immunosuppressive capacities. Our data indicate that, apart from the quality of fetal calf serum, other culture parameters, including basal medium, glucose concentration, stable glutamine, bone marrow mononuclear cell plating density, MSC passaging density, and plastic surface quality, affect the final outcome. Furthermore, the use of basic fibroblast growth factor (bFGF), the most common growth supplement in MSC culture media, greatly increases the proliferation rate but also upregulates HLA-class I and induces low HLA-DR expression. However, not only does this upregulation not elicit significant in vitro allogeneic T cell responses, but also bFGF-cultured MSCs exhibit enhanced in vivo immunosuppressive potential. Besides, addition of bFGF affects MSC multilineage differentiation capacity, favoring differentiation toward the osteogenic lineage and limiting neurogenic potential. In conclusion, in this report we define the optimal culture conditions for the successful isolation and expansion of human MSCs in high numbers for subsequent cellular therapeutic approaches.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                17 October 2016
                2016
                : 4
                : 115
                Affiliations
                South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
                Author notes

                Edited by: Francesco De Francesco, Seconda Università degli Studi di Napoli, Italy

                Reviewed by: Barbara Zavan, University of Padua, Italy; Virginia Tirino, Department of Experimental Medicine, Italy

                *Correspondence: Michael S. Pepper michael.pepper@ 123456up.ac.za

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Cell and Developmental Biology

                †Present Address: Marnie Potgieter, Department of Genetics, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa

                Article
                10.3389/fcell.2016.00115
                5065960
                27800478
                a25eaba8-bda1-43eb-ad22-1cf8ef563891
                Copyright © 2016 Dessels, Potgieter and Pepper.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 August 2016
                : 30 September 2016
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 79, Pages: 10, Words: 7946
                Categories
                Cell and Developmental Biology
                Mini Review

                adipose-derived stromal cells,fetal bovine serum,good manufacturing processes,in vitro expansion,human serum,platelet rich plasma,platelet poor plasma,platelet lysate

                Comments

                Comment on this article