39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis.

          Author Summary

          Although cardiovascular events, such as myocardial infarction and stroke, usually occur at later ages, it is known that the atherogenic process begins much earlier in life. Detection of subclinical atherosclerosis would therefore offer the means to identify individuals who are at increased risk of developing cardiovascular events. What remains unclear is the relative contribution of genetic variation to the development of the early stages of atherosclerosis. To address this question, we searched for combinations of both genetic and clinical determinants that are the most predictive of the progression of subclinical carotid atherosclerosis in a sample of 1,027 young adults, aged between 24–39 years, from the Finnish general population (The Cardiovascular Risk in Young Finns Study). We demonstrate here, for the first time in a population-based follow-up study, a predictive relationship between individual's genotypic variation and early signs of atherosclerosis, which cannot be explained by conventional cardiovascular risk factors, such as obesity and elevated blood pressure levels. The predictive modeling framework facilitates the usability of genetic information by identifying informative panels of variants, along with conventional risk factors, which may prove to be useful in early detection and management of atherosclerosis. The clinical implications of these findings remain to be studied.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems.

          Epistasis, or interactions between genes, has long been recognized as fundamentally important to understanding the structure and function of genetic pathways and the evolutionary dynamics of complex genetic systems. With the advent of high-throughput functional genomics and the emergence of systems approaches to biology, as well as a new-found ability to pursue the genetic basis of evolution down to specific molecular changes, there is a renewed appreciation both for the importance of studying gene interactions and for addressing these questions in a unified, quantitative manner.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomewide association analysis of coronary artery disease.

            Modern genotyping platforms permit a systematic search for inherited components of complex diseases. We performed a joint analysis of two genomewide association studies of coronary artery disease. We first identified chromosomal loci that were strongly associated with coronary artery disease in the Wellcome Trust Case Control Consortium (WTCCC) study (which involved 1926 case subjects with coronary artery disease and 2938 controls) and looked for replication in the German MI [Myocardial Infarction] Family Study (which involved 875 case subjects with myocardial infarction and 1644 controls). Data on other single-nucleotide polymorphisms (SNPs) that were significantly associated with coronary artery disease in either study (P 80%) of a true association: chromosomes 1p13.3 (rs599839), 1q41 (rs17465637), 10q11.21 (rs501120), and 15q22.33 (rs17228212). We identified several genetic loci that, individually and in aggregate, substantially affect the risk of development of coronary artery disease. Copyright 2007 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

              To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2010
                September 2010
                30 September 2010
                : 6
                : 9
                : e1001146
                Affiliations
                [1 ]Biomathematics Research Group, Department of Mathematics, University of Turku, Turku, Finland
                [2 ]Department of Clinical Chemistry, Tampere University Hospital and University of Tampere, Tampere, Finland
                [3 ]Data Mining and Modeling Group, Turku Centre for Biotechnology, Turku, Finland
                [4 ]Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland
                [5 ]Department of Medicine, Turku University Central Hospital, Turku, Finland
                [6 ]Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
                [7 ]Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
                [8 ]Department of Microbiology and Immunology, University of Tampere, Tampere, Finland
                [9 ]Department of Pediatrics, Tampere University Hospital, Tampere, Finland
                [10 ]Department of Pediatrics, University of Oulu, Oulu, Finland
                [11 ]Department of Medicine, University of Turku, Turku, Finland
                [12 ]Department of Clinical Physiology, Turku University Hospital, Turku, Finland
                University of California San Diego and The Scripps Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: TL LLE MK LT JSAV OTR TA. Performed the experiments: NM NP YMF JAH TL LPL RR CE NHK MH. Analyzed the data: SO LLE NM MJ JAH LPL TA. Contributed reagents/materials/analysis tools: SO TL LLE MK MJ TL LT JSAV OTR TA. Wrote the paper: SO TL OTR TA.

                Article
                09-PLGE-RA-2224R5
                10.1371/journal.pgen.1001146
                2947986
                20941391
                a27bd97d-4c69-46cf-91f9-fbe1cf5c7469
                Okser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 December 2009
                : 1 September 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Cardiovascular Disorders/Cardiovascular Imaging
                Cardiovascular Disorders/Coronary Artery Disease
                Computational Biology/Population Genetics
                Computational Biology/Systems Biology
                Computer Science/Applications
                Computer Science/Numerical Analysis and Theoretical Computing
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Medical Genetics
                Mathematics/Statistics

                Genetics
                Genetics

                Comments

                Comment on this article