5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Resources as a Tool for Enhancing Sustainability in Winemaking

      review-article
      Microorganisms
      MDPI
      enology, fermentation, Saccharomyces cerevisiae, non-Saccharomyces yeasts, lactic acid bacteria, bioprotection, wine by-products

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In agriculture, the wine sector is one of the industries most affected by the sustainability issue. It is responsible for about 0.3% of annual global greenhouse gas emissions from anthropogenic activities. Sustainability in vitiviniculture was firstly linked to vineyard management, where the use of fertilizers, pesticides and heavy metals is a major concern. More recently, the contribution of winemaking, from grape harvest to bottling, has also been considered. Several cellar processes could be improved for reducing the environmental impact of the whole chain, including microbe-driven transformations. This paper reviews the potential of microorganisms and interactions thereof as a natural, environmentally friendly tool to improve the sustainability aspects of winemaking, all along the production chain. The main phases identified as potentially interesting for exploiting microbial activities to lower inputs are: (i) pre-fermentative stages, (ii) alcoholic fermentation, (iii) stage between alcoholic and malolactic fermentation, (iv) malolactic fermentation, (v) stabilization and spoilage risk management, and (vi) by-products and wastewater treatment. The presence of proper yeast or bacterial strains, the management and timing of inoculation of starter cultures, and some appropriate technological modifications that favor selected microbial activities can lead to several positive effects, including (among other) energy savings, reduction of chemical additives such as sulfites, and reuse of certain residues.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial properties of chitosan and mode of action: a state of the art review.

          Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

            Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.

              Yeasts are predominant in the ancient and complex process of winemaking. In spontaneous fermentations, there is a progressive growth pattern of indigenous yeasts, with the final stages invariably being dominated by the alcohol-tolerant strains of Saccharomyces cerevisiae. This species is universally known as the 'wine yeast' and is widely preferred for initiating wine fermentations. The primary role of wine yeast is to catalyze the rapid, complete and efficient conversion of grape sugars to ethanol, carbon dioxide and other minor, but important, metabolites without the development of off-flavours. However, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing quest for specialized wine yeast strains possessing a wide range of optimized, improved or novel oenological properties. This review highlights the wealth of untapped indigenous yeasts with oenological potential, the complexity of wine yeasts' genetic features and the genetic techniques often used in strain development. The current status of genetically improved wine yeasts and potential targets for further strain development are outlined. In light of the limited knowledge of industrial wine yeasts' complex genomes and the daunting challenges to comply with strict statutory regulations and consumer demands regarding the future use of genetically modified strains, this review cautions against unrealistic expectations over the short term. However, the staggering potential advantages of improved wine yeasts to both the winemaker and consumer in the third millennium are pointed out. Copyright 2000 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                02 April 2020
                April 2020
                : 8
                : 4
                : 507
                Affiliations
                CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale XXVIII Aprile 26, 31015 Conegliano, Italy; tiziana.nardi@ 123456crea.gov.it
                Author information
                https://orcid.org/0000-0003-2148-3112
                Article
                microorganisms-08-00507
                10.3390/microorganisms8040507
                7232173
                32252445
                a27cdd8b-033d-4878-9178-bc988797b9a9
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 February 2020
                : 31 March 2020
                Categories
                Review

                enology,fermentation,saccharomyces cerevisiae,non-saccharomyces yeasts,lactic acid bacteria,bioprotection,wine by-products

                Comments

                Comment on this article