21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effects of astaxanthin against ischemia/reperfusion induced renal injury in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astaxanthin (ATX) is a powerful antioxidant that occurs naturally in a wide variety of living organisms. Previous studies have shown that ATX has effects of eliminating oxygen free radicals and can protect organs from ischemia/reperfusion (IR) induced injury. The present study was designed to further investigate the protective effects of ATX on oxidative stress induced toxicity in tubular epithelial cells and on IR induced renal injury in mice. ATX, at a concentration of 250 nM, attenuated 100 μM H 2O 2-inudced viability decrease of tubular epithelial cells. In vivo, ATX preserved renal function 12 h or 24 h post IR. Pretreatment of ATX via oral gavage for 14 consecutive days prior to IR dramatically prevented IR induced histological damage 24 h post IR. Histological results showed that the pathohistological score, number of apoptotic cells, and the expression of α-smooth muscle actin were significantly decreased by pretreatment of ATX. In addition, oxidative stress and inflammation in kidney samples were significantly reduced by ATX 24 h post IR. Taken together, the current study suggests that pretreatment of ATX is effective in preserving renal function and histology via antioxidant activity.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12967-015-0388-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of ischaemia-reperfusion injury.

          Reperfusion of ischaemic tissues is often associated with microvascular dysfunction that is manifested as impaired endothelium-dependent dilation in arterioles, enhanced fluid filtration and leukocyte plugging in capillaries, and the trafficking of leukocytes and plasma protein extravasation in postcapillary venules. Activated endothelial cells in all segments of the microcirculation produce more oxygen radicals, but less nitric oxide, in the initial period following reperfusion. The resulting imbalance between superoxide and nitric oxide in endothelial cells leads to the production and release of inflammatory mediators (e.g. platelet-activating factor, tumour necrosis factor) and enhances the biosynthesis of adhesion molecules that mediate leukocyte-endothelial cell adhesion. Some of the known risk factors for cardiovascular disease (hypercholesterolaemia, hypertension, and diabetes) appear to exaggerate many of the microvascular alterations elicited by ischaemia and reperfusion (I/R). The inflammatory mediators released as a consequence of reperfusion also appear to activate endothelial cells in remote organs that are not exposed to the initial ischaemic insult. This distant response to I/R can result in leukocyte-dependent microvascular injury that is characteristic of the multiple organ dysfunction syndrome. Adaptational responses to I/R injury have been demonstrated that allow for protection of briefly ischaemic tissues against the harmful effects of subsequent, prolonged ischaemia, a phenomenon called ischaemic preconditioning. There are two temporally and mechanistically distinct types of protection afforded by this adaptational response, i.e. acute and delayed preconditioning. The factors (e.g. protein kinase C activation) that initiate the acute and delayed preconditioning responses appear to be similar; however the protective effects of acute preconditioning are protein synthesis-independent, while the effects of delayed preconditioning require protein synthesis. The published literature in this field of investigation suggests that there are several potential targets for therapeutic intervention against I/R-induced microvascular injury. Copyright 2000 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delayed graft function in kidney transplantation.

            Delayed graft function is a form of acute renal failure resulting in post-transplantation oliguria, increased allograft immunogenicity and risk of acute rejection episodes, and decreased long-term survival. Factors related to the donor and prerenal, renal, or postrenal transplant factors related to the recipient can contribute to this condition. From experimental studies, we have learnt that both ischaemia and reinstitution of blood flow in ischaemically damaged kidneys after hypothermic preservation activate a complex sequence of events that sustain renal injury and play a pivotal part in the development of delayed graft function. Elucidation of the pathophysiology of renal ischaemia and reperfusion injury has contributed to the development of strategies to decrease the rate of delayed graft function, focusing on donor management, organ procurement and preservation techniques, recipient fluid management, and pharmacological agents (vasodilators, antioxidants, anti-inflammatory agents). Several new drugs show promise in animal studies in preventing or ameliorating ischaemia-reperfusion injury and possibly delayed graft function, but definitive clinical trials are lacking. The goal of monotherapy for the prevention or treatment of is perhaps unattainable, and multidrug approaches or single drug targeting multiple signals will be the next step to reduce post-transplantation injury and delayed graft function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention.

              Youhua Liu (2004)
              Mature tubular epithelial cells in adult kidney can undergo epithelial-to-mesenchymal transition (EMT), a phenotypic conversion that is fundamentally linked to the pathogenesis of renal interstitial fibrosis. Emerging evidence indicates that a large proportion of interstitial fibroblasts are actually originated from tubular epithelial cells via EMT in diseased kidney. Moreover, selective blockade of EMT in a mouse genetic model dramatically reduces fibrotic lesions after obstructive injury, underscoring a definite importance of EMT in renal fibrogenesis. Tubular EMT is proposed as an orchestrated, highly regulated process that consists of four key steps: (1) loss of epithelial cell adhesion; (2) de novo alpha-smooth muscle actin expression and actin reorganization; (3) disruption of tubular basement membrane; and (4) enhanced cell migration and invasion. Of the many factors that regulate EMT in different ways, transforming growth factor-beta1 is the most potent inducer that is capable of initiating and completing the entire EMT course, whereas hepatocyte growth factor and bone morphogenetic protein-7 act as EMT inhibitors both in vitro and in vivo. Multiple intracellular signaling pathways have been implicated in mediating EMT, in which Smad/integrin-linked kinase may play a central role. This article attempts to provide a comprehensive review of recent advances on understanding the pathologic significance, molecular mechanism, and therapeutic intervention of EMT in the setting of chronic renal fibrosis.
                Bookmark

                Author and article information

                Contributors
                Xuefeng_qiu@163.com
                Kaifu1988@yeah.net
                dr.zxz@hotmail.com
                zgam90@163.com
                yuanym6666@163.com
                zsw999@hotmail.com
                xiaopinggu1@gmail.com
                dr.guohongqian@gmail.com
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                27 January 2015
                27 January 2015
                2015
                : 13
                : 28
                Affiliations
                [ ]Department of Urology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210008 China
                [ ]Institute of Urology, Nanjing University, Nanjing, 210093 China
                [ ]State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093 China
                [ ]Department of Anesthesiology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210008 China
                Article
                388
                10.1186/s12967-015-0388-1
                4323259
                25623758
                a27d11fb-dccb-43e8-8d57-7b36f405bfc7
                © Qiu et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 December 2014
                : 12 January 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Medicine
                renal transplantation,kidney,ischemia/reperfusion,oxidative stress,astaxanthin,antioxidant
                Medicine
                renal transplantation, kidney, ischemia/reperfusion, oxidative stress, astaxanthin, antioxidant

                Comments

                Comment on this article