15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High-throughput generation, optimization and analysis of genome-scale metabolic models

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking approximately 48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          A protocol for generating a high-quality genome-scale metabolic reconstruction.

          Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

            An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

              Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Science and Business Media LLC
                1087-0156
                1546-1696
                September 2010
                August 29 2010
                September 2010
                : 28
                : 9
                : 977-982
                Article
                10.1038/nbt.1672
                20802497
                © 2010

                Comments

                Comment on this article