17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Relevance of Sex Differences in Performance Fatigability

      research-article
      Medicine and science in sports and exercise
      sex differences, women, muscle fatigue

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men and this is most widely described for isometric fatiguing contractions, and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women over the last 20 years. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations, presents as a field ripe with opportunity for high impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Muscle fatigue: what, why and how it influences muscle function.

          Much is known about the physiological impairments that can cause muscle fatigue. It is known that fatigue can be caused by many different mechanisms, ranging from the accumulation of metabolites within muscle fibres to the generation of an inadequate motor command in the motor cortex, and that there is no global mechanism responsible for muscle fatigue. Rather, the mechanisms that cause fatigue are specific to the task being performed. The development of muscle fatigue is typically quantified as a decline in the maximal force or power capacity of muscle, which means that submaximal contractions can be sustained after the onset of muscle fatigue. There is even evidence that the duration of some sustained tasks is not limited by fatigue of the principal muscles. Here we review experimental approaches that focus on identifying the mechanisms that limit task failure rather than those that cause muscle fatigue. Selected comparisons of tasks, groups of individuals and interventions with the task-failure approach can provide insight into the rate-limiting adjustments that constrain muscle function during fatiguing contractions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise-Induced Muscle Damage in Humans

            Exercise-induced muscle injury in humans frequently occurs after unaccustomed exercise, particularly if the exercise involves a large amount of eccentric (muscle lengthening) contractions. Direct measures of exercise-induced muscle damage include cellular and subcellular disturbances, particularly Z-line streaming. Several indirectly assessed markers of muscle damage after exercise include increases in T2 signal intensity via magnetic resonance imaging techniques, prolonged decreases in force production measured during both voluntary and electrically stimulated contractions (particularly at low stimulation frequencies), increases in inflammatory markers both within the injured muscle and in the blood, increased appearance of muscle proteins in the blood, and muscular soreness. Although the exact mechanisms to explain these changes have not been delineated, the initial injury is ascribed to mechanical disruption of the fiber, and subsequent damage is linked to inflammatory processes and to changes in excitation-contraction coupling within the muscle. Performance of one bout of eccentric exercise induces an adaptation such that the muscle is less vulnerable to a subsequent bout of eccentric exercise. Although several theories have been proposed to explain this "repeated bout effect," including altered motor unit recruitment, an increase in sarcomeres in series, a blunted inflammatory response, and a reduction in stress-susceptible fibers, there is no general agreement as to its cause. In addition, there is controversy concerning the presence of sex differences in the response of muscle to damage-inducing exercise. In contrast to the animal literature, which clearly shows that females experience less damage than males, research using human studies suggests that there is either no difference between men and women or that women are more prone to exercise-induced muscle damage than are men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translating Fatigue to Human Performance.

              Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine-surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance.
                Bookmark

                Author and article information

                Contributors
                Journal
                8005433
                5723
                Med Sci Sports Exerc
                Med Sci Sports Exerc
                Medicine and science in sports and exercise
                0195-9131
                1530-0315
                24 March 2016
                November 2016
                01 November 2017
                : 48
                : 11
                : 2247-2256
                Affiliations
                Exercise Science Program, Department of Physical Therapy Marquette University, Milwaukee, WI
                Author notes
                Address for Correspondence, Sandra K. Hunter, Department of Physical Therapy, Marquette University, Cramer Hall, Rm 230N, Milwaukee, WI 53201
                Article
                PMC5349856 PMC5349856 5349856 nihpa767557
                10.1249/MSS.0000000000000928
                5349856
                27015385
                a2800213-7d41-483b-8afd-ea608b3e1b5b
                History
                Categories
                Article

                muscle fatigue,women,sex differences
                muscle fatigue, women, sex differences

                Comments

                Comment on this article

                scite_

                Similar content229

                Cited by80

                Most referenced authors806