• Record: found
  • Abstract: found
  • Article: found
Is Open Access

DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Novel mixed ligand bivalent copper complexes [ Cu. L. A. ClO 4 ] and [ Cu. L. A] where “ L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “ A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,2 1-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H 2O 2 and UV light.

      Related collections

      Most cited references 78

      • Record: found
      • Abstract: found
      • Article: not found

      Advances in metal-induced oxidative stress and human disease.

      Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha-tocopherol (vitamin E), glutathione (GSH), carotenoids, flavonoids, and other antioxidants) are capable of chelating metal ions reducing thus their catalytic activity to form ROS. A novel therapeutic approach to suppress oxidative stress is based on the development of dual function antioxidants comprising not only chelating, but also scavenging components. Parodoxically, two major antioxidant enzymes, superoxide dismutase (SOD) and catalase contain as an integral part of their active sites metal ions to battle against toxic effects of metal-induced free radicals. The aim of this review is to provide an overview of redox and non-redox metal-induced formation of free radicals and the role of oxidative stress in toxic action of metals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
        • Record: found
        • Abstract: found
        • Article: not found

        Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology.

         Daniel Kosman (2009)
        Multicopper oxidases (MCOs) are unique among copper proteins in that they contain at least one each of the three types of biologic copper sites, type 1, type 2, and the binuclear type 3. MCOs are descended from the family of small blue copper proteins (cupredoxins) that likely arose as a complement to the heme-iron-based cytochromes involved in electron transport; this event corresponded to the aerobiosis of the biosphere that resulted in the conversion of Fe(II) to Fe(III) as the predominant redox state of this essential metal and the solubilization of copper from Cu(2)S to Cu(H(2)O)( n ) (2+). MCOs are encoded in genomes in all three kingdoms and play essential roles in the physiology of essentially all aerobes. With four redox-active copper centers, MCOs share with terminal copper-heme oxidases the ability to catalyze the four-electron reduction of O(2) to two molecules of water. The electron transfers associated with this reaction are both outer and inner sphere in nature and their mechanisms have been fairly well established. A subset of MCO proteins exhibit specificity for Fe(2+), Cu(+), and/or Mn(2+) as reducing substrates and have been designated as metallooxidases. These enzymes, in particular the ferroxidases found in all fungi and metazoans, play critical roles in the metal metabolism of the expressing organism.
          • Record: found
          • Abstract: not found
          • Article: not found

          1,10-Phenanthroline: a versatile ligand


            Author and article information

            1Department of Chemistry, Osmania University, Hyderabad, Andhra Pradesh 500007, India
            2Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Andhra Pradesh 500004, India
            Author notes

            Academic Editor: Enrico Rizzarelli

            Bioinorg Chem Appl
            Bioinorg Chem Appl
            Bioinorganic Chemistry and Applications
            Hindawi Publishing Corporation
            8 May 2014
            : 2014
            4034397 10.1155/2014/691260
            Copyright © 2014 Vijay Kumar Chityala et al.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Funded by: University Grants Commission
            Research Article



            Comment on this article