The cooling of numerous microelectronic devices has become a need in today's world. Nanofluids, a novel type of heat transport fluid containing nano-sized particles embedded in a host liquid, were developed a few years ago. Impact of ultra-fine nanoparticles with oil, water, or ethylene glycol produces these fluids. Nano-liquids have a variety of applications, including engine cooling, electronic devices, biomedicine, and the manufacture of thermal exchangers. The main objective of current research article is to scrutinizes theoretically, the effects of axisymmetric magnetohydrodynamic flow of bio-convective nanoliquid through a moving surface in the occurrence of swimming microorganisms. The idea of the envisaged model is improved by considering the consequence of thermal radiation, activation energy with generalized slip effects under convective boundaries. The present analysis is developed in the form of mathematical formulation and then solved numerically. The governing flow equations are transmuted into dimensionless nonlinear ODEs system by compatible similarity transformations and then integrated this so-formulated highly nonlinear problem numerically via bvp4c built-in scheme in MATLAB. The significance of influential parameters versus velocity field, temperature profile, concentration field and motile density of microorganism’s profile are examined with the aid of graphs and tabular data. The physical interpretation of outcomes highlight that the velocity receives increment for amplified mixed convection parameter. The thermal profile is found to be reducing with a greater Prandtl number. The concentration profile of nanoparticle boosts up for greater activation energy parameter. The microorganism’s profile is reduced via bioconvection Lewis number. This investigation contains the significance of bioconvection phenomenon, thermal radiation, slip effects and activation energy under convective boundary conditions. These impacts are used in axisymmetric, stagnation point flow of bioconvective magnetized nanofluid containing swimming gyrotactic motile microorganisms over a lubricated surface. The present analysis is not yet published.