9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategies in Translating the Therapeutic Potentials of Host Defense Peptides

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The golden era of antibiotics, heralded by the discovery of penicillin, has long been challenged by the emergence of antimicrobial resistance (AMR). Host defense peptides (HDPs), previously known as antimicrobial peptides, are emerging as a group of promising antimicrobial candidates for combatting AMR due to their rapid and unique antimicrobial action. Decades of research have advanced our understanding of the relationship between the physicochemical properties of HDPs and their underlying antimicrobial and non-antimicrobial functions, including immunomodulatory, anti-biofilm, and wound healing properties. However, the mission of translating novel HDP-derived molecules from bench to bedside has yet to be fully accomplished, primarily attributed to their intricate structure-activity relationship, toxicity, instability in host and microbial environment, lack of correlation between in vitro and in vivo efficacies, and dwindling interest from large pharmaceutical companies. Based on our previous experience and the expanding knowledge gleaned from the literature, this review aims to summarize the novel strategies that have been employed to enhance the antimicrobial efficacy, proteolytic stability, and cell selectivity, which are all crucial factors for bench-to-bedside translation of HDP-based treatment. Strategies such as residues substitution with natural and/or unnatural amino acids, hybridization, L-to-D heterochiral isomerization, C- and N-terminal modification, cyclization, incorporation with nanoparticles, and “smart design” using artificial intelligence technology, will be discussed. We also provide an overview of HDP-based treatment that are currently in the development pipeline.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Nanoparticles: Properties, applications and toxicities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The expanding scope of antimicrobial peptide structures and their modes of action.

            Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.

              The emergence of multidrug-resistant gram-negative bacteria and the lack of new antibiotics to combat them have led to the revival of polymyxins, an old class of cationic, cyclic polypeptide antibiotics. Polymyxin B and polymyxin E (colistin) are the 2 polymyxins used in clinical practice. Most of the reintroduction of polymyxins during the last few years is related to colistin. The polymyxins are active against selected gram-negative bacteria, including Acinetobacter species, Pseudomonas aeruginosa, Klebsiella species, and Enterobacter species. These drugs have been used extensively worldwide for decades for local use. However, parenteral use of these drugs was abandoned approximately 20 years ago in most countries, except for treatment of patients with cystic fibrosis, because of reports of common and serious nephrotoxicity and neurotoxicity. Recent studies of patients who received intravenous polymyxins for the treatment of serious P. aeruginosa and Acinetobacter baumannii infections of various types, including pneumonia, bacteremia, and urinary tract infections, have led to the conclusion that these antibiotics have acceptable effectiveness and considerably less toxicity than was reported in old studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                22 May 2020
                2020
                : 11
                : 983
                Affiliations
                [1] 1Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham , Nottingham, United Kingdom
                [2] 2Department of Ophthalmology, Queen's Medical Centre , Nottingham, United Kingdom
                [3] 3Anti-infectives Research Group, Singapore Eye Research Institute, The Academia , Singapore, Singapore
                Author notes

                Edited by: Charles Lee Bevins, University of California, Davis, United States

                Reviewed by: Henk Peter Haagsman, Utrecht University, Netherlands; Ping Li, Zhejiang Gongshang University, China

                *Correspondence: Rajamani Lakshminarayanan lakshminarayanan.rajamani@ 123456seri.com.sg

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                †These authors share senior authorship

                Article
                10.3389/fimmu.2020.00983
                7256188
                32528474
                a2989adf-e2d4-43e4-bb27-887d96d02eb1
                Copyright © 2020 Ting, Beuerman, Dua, Lakshminarayanan and Mohammed.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 February 2020
                : 27 April 2020
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 197, Pages: 16, Words: 13708
                Funding
                Funded by: Medical Research Council 10.13039/501100000265
                Award ID: MR/T001674/1
                Funded by: Fight for Sight UK 10.13039/501100000615
                Award ID: 24CO4
                Categories
                Immunology
                Review

                Immunology
                antibiotic,antimicrobial peptide,antimicrobial resistance,artificial intelligence,host defense peptide,nanoparticle,peptide

                Comments

                Comment on this article