9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnesium has been shown to effectively prevent vascular calcification associated with chronic kidney disease. Magnesium has been hypothesized to prevent the upregulation of osteoblastic genes that potentially drives calcification. However, extracellular effects of magnesium on hydroxyapatite formation are largely neglected. This study investigated the effects of magnesium on intracellular changes associated with transdifferentiation and extracellular crystal formation. Bovine vascular smooth muscle cells were calcified using β-glycerophosphate. Transcriptional analysis, alkaline phosphatase activity and detection of apoptosis were used to identify transdifferentiation. Using X-ray diffraction and energy dispersive spectroscopy extracellular crystal composition was investigated. Magnesium prevented calcification in vascular smooth muscle cells. β-glycerophosphate increased expression of osteopontin but no other genes related to calcification. Alkaline phosphatase activity was stable and apoptosis was only detected after calcification independent of magnesium. Blocking of the magnesium channel TRPM7 using 2-APB did not abrogate the protective effects of magnesium. Magnesium prevented the formation of hydroxyapatite, which formed extensively during β-glycerophosphate treatment. Magnesium reduced calcium and phosphate fractions of 68% and 41% extracellular crystals, respectively, without affecting the fraction of magnesium. This study demonstrates that magnesium inhibits hydroxyapatite formation in the extracellular space, thereby preventing calcification of vascular smooth muscle cells.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies.

          The mechanisms involved in the initiation of vascular calcification are not known, but matrix vesicles, the nucleation sites for calcium crystal formation in bone, are likely candidates, because similar structures have been found in calcified arteries. The regulation of matrix vesicle production is poorly understood but is thought to be associated with apoptotic cell death. In the present study, we investigated the role of apoptosis in vascular calcification. We report that apoptosis occurs in a human vascular calcification model in which postconfluent vascular smooth muscle cell (VSMC) cultures form nodules spontaneously and calcify after approximately 28 days. Apoptosis occurred before the onset of calcification in VSMC nodules and was detected by several methods, including nuclear morphology, the TUNEL technique, and external display of phosphatidyl serine. Inhibition of apoptosis with the caspase inhibitor ZVAD.fmk reduced calcification in nodules by approximately 40%, as measured by the cresolphthalein method and alizarin red staining. In addition, when apoptosis was stimulated in nodular cultures with anti-Fas IgM, there was a 10-fold increase in calcification. Furthermore, incubation of VSMC-derived apoptotic bodies with (45)Ca demonstrated that, like matrix vesicles, they can concentrate calcium. These observations provide evidence that apoptosis precedes VSMC calcification and that apoptotic bodies derived from VSMCs may act as nucleating structures for calcium crystal formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization.

            Vascular calcification is associated with an increased risk of myocardial infarction; however, the mechanisms linking these 2 processes are unknown. Studies in macrophages have suggested that calcium phosphate crystals induce the release of proinflammatory cytokines; however, no studies have been performed on the effects of calcium phosphate crystals on vascular smooth muscle cell function. In the present study, we found that calcium phosphate crystals induced cell death in human aortic vascular smooth muscle cells with their potency depending on their size and composition. Calcium phosphate crystals of approximately 1 microm or less in diameter caused rapid rises in intracellular calcium concentration, an effect that was inhibited by the lysosomal proton pump inhibitor, bafilomycin A1. Bafilomycin A1 also blocked vascular smooth muscle cell death suggesting that crystal dissolution in lysosomes leads to an increase in intracellular calcium levels and subsequent cell death. These studies give novel insights into the bioactivity of calcified deposits and suggest that small calcium phosphate crystals could destabilize atherosclerotic plaques by initiating inflammation and by causing vascular smooth muscle cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α.

              Vascular calcification is prevalent in clinical states characterized by low-grade chronic inflammation, such as chronic kidney disease (CKD). Calciprotein particles (CPP) are calcium phosphate-containing nano-aggregates, which have been found in the blood of CKD patients and appear pro-inflammatory in vitro. The interplay of CPPs and inflammatory cytokines with regard to the calcification of vascular smooth muscle cells (VSMC), in vitro, has not been investigated yet.
                Bookmark

                Author and article information

                Contributors
                jeroen.debaaij@radboudumc.nl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 February 2018
                1 February 2018
                2018
                : 8
                : 2069
                Affiliations
                [1 ]ISNI 0000 0004 0444 9382, GRID grid.10417.33, Department of Physiology, , Radboud Institute for Molecular Life Sciences, Radboud university medical center, ; Nijmegen, The Netherlands
                [2 ]ISNI 0000000122931605, GRID grid.5590.9, Institute for Molecules and Materials, , Radboud University, ; Nijmegen, The Netherlands
                [3 ]ISNI 0000 0001 2322 6764, GRID grid.13097.3c, BHF Centre of Research Excellence, , Cardiovascular Division, James Black Centre, King’s College, ; London, United Kingdom
                [4 ]ISNI 0000 0004 1936 8948, GRID grid.4991.5, Department of Physiology, , Anatomy and Genetics, University of Oxford, ; Oxford, United Kingdom
                Article
                20241
                10.1038/s41598-018-20241-3
                5794996
                29391410
                a29e1a66-e416-47e3-94cd-a818f201a886
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 October 2017
                : 15 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article