87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is a membrane trafficking to vacuole/lysosome induced by nutrient starvation. In Saccharomyces cerevisiae, Tor protein, a phosphatidylinositol kinase-related kinase, is involved in the repression of autophagy induction by a largely unknown mechanism. Here, we show that the protein kinase activity of Apg1 is enhanced by starvation or rapamycin treatment. In addition, we have also found that Apg13, which binds to and activates Apg1, is hyperphosphorylated in a Tor-dependent manner, reducing its affinity to Apg1. This Apg1–Apg13 association is required for autophagy, but not for the cytoplasm-to-vacuole targeting (Cvt) pathway, another vesicular transport mechanism in which factors essential for autophagy (Apg proteins) are also employed under vegetative growth conditions. Finally, other Apg1-associating proteins, such as Apg17 and Cvt9, are shown to function specifically in autophagy or the Cvt pathway, respectively, suggesting that the Apg1 complex plays an important role in switching between two distinct vesicular transport systems in a nutrient-dependent manner.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast.

          The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors.

            The rapamycin-sensitive TOR signalling pathway in Saccharomyces cerevisiae activates a cell-growth program in response to nutrients such as nitrogen and carbon. The TOR1 and TOR2 kinases (TOR) control cytoplasmic protein synthesis and degradation through the conserved TAP42 protein. Upon phosphorylation by TOR, TAP42 binds and possibly inhibits type 2A and type-2A-related phosphatases; however, the mechanism by which TOR controls nuclear events such as global repression of starvation-specific transcription is unknown. Here we show that TOR prevents transcription of genes expressed upon nitrogen limitation by promoting the association of the GATA transcription factor GLN3 with the cytoplasmic protein URE2. The binding of GLN3 to URE2 requires TOR-dependent phosphorylation of GLN3. Phosphorylation and cytoplasmic retention of GLN3 are also dependent on the TOR effector TAP42, and are antagonized by the type-2A-related phosphatase SIT4. TOR inhibits expression of carbon-source-regulated genes by stimulating the binding of the transcriptional activators MSN2 and MSN4 to the cytoplasmic 14-3-3 protein BMH2. Thus, the TOR signalling pathway broadly controls nutrient metabolism by sequestering several transcription factors in the cytoplasm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression.

              The yeast TOR2 gene encodes an essential 282 kd phosphatidylinositol (PI) 3-kinase homolog. TOR2 is related to the catalytic subunit of bovine PI 3-kinase and to yeast VPS34, a vacuolar sorting protein also shown to have PI 3-kinase activity. The immunosuppressant rapamycin most likely acts by inhibiting PI kinase activity because TOR2 mutations confer resistance to rapamycin and because a TOR1 TOR2 double disruption (TOR1 is a nonessential TOR2 homolog) confers G1 arrest, as does rapamycin. Our results further suggest that 3-phosphorylated phosphoinositides, whose physiological significance has not been determined, are an important signal in cell cycle activation. In yeast, this signal may act in a signal transduction pathway similar to the interleukin-2 signal transduction pathway in T cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                18 September 2000
                : 150
                : 6
                : 1507-1513
                Affiliations
                [a ]Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
                [b ]School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
                [c ]Department of Biosciences, Teikyo University of Science and Technology, Yamanashi 409-0193, Japan
                Article
                0004081
                10.1083/jcb.150.6.1507
                2150712
                10995454
                a2a819b5-0c86-4ba0-a1bb-dd23fcedd75d
                © 2000 The Rockefeller University Press
                History
                : 17 April 2000
                : 7 July 2000
                : 2 August 2000
                Categories
                Report

                Cell biology
                cvt,phosphorylation,starvation,rapamycin,yeast
                Cell biology
                cvt, phosphorylation, starvation, rapamycin, yeast

                Comments

                Comment on this article