13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex differences in vaccine-induced humoral immunity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmunity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral immunity, key to long-term pathogen-specific protection.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.

          A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene 'signatures' that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4-an orchestrator of the integrated stress response-that correlated with and predicted YF-17D CD8(+) T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Functional Role for Antibodies in Tuberculosis.

            While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rituximab: mechanism of action.

              Rituximab is a mainstay in the therapy for a broad variety of B-cell malignancies. Despite its undeniable therapeutic value, we still do not fully understand the mechanisms of action responsible for rituximab's anti-tumor effects. Direct signaling, complement-mediated cytotoxicity (CMC), and antibody-dependent cellular cytotoxicity (ADCC) all appear to play a role in rituximab efficacy. In vitro, animal model and clinical data addressing each of these mechanisms of action are reviewed, as are data speaking to the complexity of interactions between these mechanisms. Taken together, these data suggest different mechanisms are likely important in different scenarios. Study of the complex mechanisms of action that contribute to the clinical efficacy of rituximab have led to novel clinical trials including novel combinations, schedules, and generation of additional antibodies designed to have even greater effect. Such studies need to be accompanied by rigorous correlative analysis if we are to understand the importance of various mechanisms of action of rituximab and use that information to improve on what is already an indispensable component of therapy.
                Bookmark

                Author and article information

                Contributors
                galter@mgh.harvard.edu
                Journal
                Semin Immunopathol
                Semin Immunopathol
                Seminars in Immunopathology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1863-2297
                1863-2300
                13 December 2018
                13 December 2018
                2019
                : 41
                : 2
                : 239-249
                Affiliations
                [1 ]ISNI 0000 0004 0489 3491, GRID grid.461656.6, Ragon Institute of MGH, MIT, and Harvard, ; 400 Technology Square, Cambridge, MA 02139 USA
                [2 ]ISNI 0000 0001 2187 5445, GRID grid.5718.b, Institut für HIV Forschung, , Universität Duisburg-Essen, ; Duisburg, Germany
                Author notes

                This article is a contribution to the special issue on Sex differences in immunity - Guest Editors: Hanna Lotter and Marcus Altfeld

                Article
                726
                10.1007/s00281-018-0726-5
                6373179
                30547182
                a2a83906-5bba-41e7-a3ee-474b846a713b
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 7 October 2018
                : 15 October 2018
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2019

                Pathology
                sex differences,gender differences,immune response,vaccination,hormones,infection
                Pathology
                sex differences, gender differences, immune response, vaccination, hormones, infection

                Comments

                Comment on this article