10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spread rate of lumpy skin disease in the Balkans, 2015-2016

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After its introduction in Turkey in November 2013 and subsequent spread in this country, lumpy skin disease (LSD) was first reported in the western Turkey in May 2015. It was observed in cattle in Greece and reported to the World Organization for Animal Health (OIE) in August 2015. From May 2015 to August 2016, 1,092 outbreaks of lumpy skin disease were reported in cattle from western Turkey and eight Balkan countries: Greece, Bulgaria, The Former Yugoslav Republic of Macedonia, Serbia, Kosovo, and Albania. During this period, the median LSD spread rate was 7.3 km/week. The frequency of outbreaks was highly seasonal, with little or no transmission reported during the winter. Also, the skewed distribution of spread rates suggested two distinct underlying epidemiological processes, associating local and distant spread possibly related to vectors and cattle trade movements, respectively.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Review: lumpy skin disease: an emerging threat to Europe, the Middle East and Asia.

          Lumpy skin disease (LSD) is an economically devastating emerging viral disease of cattle. Lumpy skin disease is currently endemic in most African countries and has recently spread out of Africa into the Middle East region. In this article, we review the putative mechanisms of spread of LSD into the Middle East and the risks of further spread into Turkey, Europe and Asia. We also review the latest findings on the epidemiology of LSD, its mechanisms of transmission, the potential role of wildlife in its maintenance and spread and the diagnostic tests and control methods currently available. © 2011 Blackwell Verlag GmbH.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle.

            Capripoxviruses are the cause of sheeppox, goatpox and lumpy skin disease (LSD) of cattle. These diseases are of great economic significance to farmers in regions in which they are endemic and are a major constraint to international trade in livestock and their products. Although the distribution of capripoxviruses is considerably reduced from what it was even 50 years ago, they are now expanding their territory, with recent outbreaks of sheeppox or goatpox in Vietnam, Mongolia and Greece, and outbreaks of LSD in Ethiopia, Egypt and Israel. Increased legal and illegal trade in live animals provides the potential for further spread, with, for instance, the possibility of LSD becoming firmly established in Asia. This review briefly summarizes what is known about capripoxviruses, including their impact on livestock production, their geographic range, host-specificity, clinical disease, transmission and genomics, and considers current developments in diagnostic tests and vaccines. Capripoxviruses have the potential to become emerging disease threats because of global climate change and changes in patterns of trade in animals and animal products. They also could be used as economic bioterrorism agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus

              Lumpy skin disease (LSD) is a severe viral disease of cattle. Circumstantial evidence suggests that the virus is transmitted mechanically by blood-feeding arthropods. We compared the importance of transmission via direct and indirect contact in field conditions by using mathematical tools. We analyzed a dataset collected during the LSD outbreak in 2006 in a large dairy herd, which included ten separated cattle groups. Outbreak dynamics and risk factors for LSD were assessed by a transmission model. Transmission by three contact modes was modelled; indirect contact between the groups within a herd, direct contact or contact via common drinking water within the groups and transmission by contact during milking procedure. Indirect transmission was the only parameter that could solely explain the entire outbreak dynamics and was estimated to have an overall effect that was over 5 times larger than all other possible routes of transmission, combined. The R 0 value induced by indirect transmission per the presence of an infectious cow for 1 day in the herd was 15.7, while the R 0 induced by direct transmission was 0.36. Sensitivity analysis showed that this result is robust to a wide range of assumptions regarding mean and standard deviation of incubation period and regarding the existence of sub-clinically infected cattle. These results indicate that LSD virus spread within the affected herd could hardly be attributed to direct contact between cattle or contact through the milking procedure. It is therefore concluded that transmission mostly occurs by indirect contact, probably by flying, blood-sucking insects. This has important implications for control of LSD.
                Bookmark

                Author and article information

                Journal
                Transboundary and Emerging Diseases
                Transbound Emerg Dis
                Wiley-Blackwell
                18651674
                February 2017
                February 2017
                :
                :
                Article
                10.1111/tbed.12624
                28239954
                a2a9b9ca-8e3c-4cb2-8681-b8bc72e353f0
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article