1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      N-Acetylaspartate 

      Quantitation of NAA in the Brain by Magnetic Resonance Spectroscopy

      other
      , , ,
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          SENSE: Sensitivity encoding for fast MRI

          New theoretical and practical concepts are presented for considerably enhancing the performance of magnetic resonance imaging (MRI) by means of arrays of multiple receiver coils. Sensitivity encoding (SENSE) is based on the fact that receiver sensitivity generally has an encoding effect complementary to Fourier preparation by linear field gradients. Thus, by using multiple receiver coils in parallel scan time in Fourier imaging can be considerably reduced. The problem of image reconstruction from sensitivity encoded data is formulated in a general fashion and solved for arbitrary coil configurations and k-space sampling patterns. Special attention is given to the currently most practical case, namely, sampling a common Cartesian grid with reduced density. For this case the feasibility of the proposed methods was verified both in vitro and in vivo. Scan time was reduced to one-half using a two-coil array in brain imaging. With an array of five coils double-oblique heart images were obtained in one-third of conventional scan time. Magn Reson Med 42:952-962, 1999. Copyright 1999 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy.

            Proton spectroscopy can noninvasively provide useful information on brain tumor type and grade. Short- (30 ms) and long- (136 ms) echo time (TE) (1)H spectra were acquired from normal white matter (NWM), meningiomas, grade II astrocytomas, anaplastic astrocytomas, glioblastomas, and metastases. Very low myo-Inositol ([mI]) and creatine ([Cr]) were characteristic of meningiomas, and high [mI] characteristic of grade II astrocytomas. Tumor choline ([Cho]) was greater than NWM and increased with grade for grade II and anaplastic astrocytomas, but was highly variable for glioblastomas. Higher [Cho] and [Cr] correlated with low lipid and lactate (P < 0.05), indicating a dilution of metabolite concentrations due to necrosis in high-grade tumors. Metabolite peak area ratios showed no correlation with lipids and mI/Cho (at TE = 30 ms), and Cr/Cho (at TE = 136 ms) best correlated with tumor grade. The quantified lipid, macromolecule, and lactate levels increased with grade of tumor, consistent with progression from hypoxia to necrosis. Quantification of lipids and macromolecules at short TE provided a good marker for tumor grade, and a scatter plot of the sum of alanine, lactate, and delta 1.3 lipid signals vs. mI/Cho provided a simple way to separate most tumors by type and grade. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Absolute Quantitation of Water and Metabolites in the Human Brain. I. Compartments and Water

                Bookmark

                Author and book information

                Book Chapter
                : 183-197
                10.1007/0-387-30172-0_13
                a2b0056b-0e01-4e4b-841e-0b2987fb511d
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,960