2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cognitive and Cortical Plasticity Deficits Correlate with Altered Amyloid-β CSF Levels in Multiple Sclerosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cognitive dysfunction is of frequent observation in multiple sclerosis (MS). It is associated with gray matter pathology, brain atrophy, and altered connectivity, and recent evidence showed that acute inflammation can exacerbate mental deficits independently of the primary functional system involved. In this study, we measured cerebrospinal fluid (CSF) levels of amyloid-β(1-42) and τ protein in MS and in clinically isolated syndrome patients, as both proteins have been associated with cognitive decline in Alzheimer's disease (AD). In AD, amyloid-β(1-42) accumulates in the brain as insoluble extracellular plaques, possibly explaining why soluble amyloid-β(1-42) is reduced in the CSF of these patients. In our sample of MS patients, amyloid-β(1-42) levels were significantly lower in patients cognitively impaired (CI) and were inversely correlated with the number of Gadolinium-enhancing (Gd+) lesions at the magnetic resonance imaging (MRI). Positive correlations between amyloid-β(1-42) levels and measures of attention and concentration were also found. Furthermore, abnormal neuroplasticity of the cerebral cortex, explored with θ burst stimulation (TBS), was observed in CI patients, and a positive correlation was found between amyloid-β(1-42) CSF contents and the magnitude of long-term potentiation-like effects induced by TBS. No correlation was conversely found between τ protein concentrations and MRI findings, cognitive parameters, and TBS effects in these patients. Together, our results indicate that in MS, central inflammation is able to alter amyloid-β metabolism by reducing its concentration in the CSF and leading to impairment of synaptic plasticity and cognitive function.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic AMPA receptor plasticity and behavior.

          The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors (AMPARs), respectively. We here present an overview of studies that have used animal models to show that such AMPAR trafficking underlies several experience-driven phenomena-from neuronal circuit formation to the modification of behavior. We argue that monitoring and manipulating synaptic AMPAR trafficking represents an attractive means to study cognitive function and dysfunction in animal models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasticity in the human central nervous system.

            Long-term potentiation (LTP) is a well-characterized form of synaptic plasticity that fulfils many of the criteria for a neural correlate of memory. LTP has been studied in a variety of animal models and, in rodents in particular, there is now a strong body of evidence demonstrating common underlying molecular mechanisms in LTP and memory. Results are beginning to emerge from studies of neural plasticity in humans. This review will summarize findings demonstrating that synaptic LTP can be induced in human CNS tissue and that rodent and human LTP probably share similar molecular mechanisms. We will also discuss the application of non-invasive stimulation techniques to awake human subjects to induce LTP-like long-lasting changes in localized neural activity. These techniques have potential therapeutic application in manipulating neural plasticity to treat a variety of conditions, including depression, Parkinson's disease, epilepsy and neuropathic pain.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Soluble pool of A? amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease

                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol
                Springer Science and Business Media LLC
                0893-133X
                1740-634X
                February 2011
                October 13 2010
                February 2011
                : 36
                : 3
                : 559-568
                Article
                10.1038/npp.2010.187
                3055691
                20944553
                a2b14032-c7e5-4f4a-a12f-d772250fbe65
                © 2011

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article