263
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells.

          An efficient Th1-driven adaptive immune response requires activation of the T cell receptor and secretion of the T cell stimulatory cytokine IL-12 by activated antigen-presenting cells. IL-12 triggers Th1 polarization of naive CD4(+) T cells and secretion of IFN-gamma. We describe a new heterodimeric cytokine termed IL-27 that consists of EBI3, an IL-12p40-related protein, and p28, a newly discovered IL-12p35-related polypeptide. IL-27 is an early product of activated antigen-presenting cells and drives rapid clonal expansion of naive but not memory CD4(+) T cells. It also strongly synergizes with IL-12 to trigger IFN-gamma production of naive CD4(+) T cells. IL-27 mediates its biologic effects through the orphan cytokine receptor WSX-1/TCCR.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes

              We have identified and purified a novel cytokine, NK cell stimulatory factor (NKSF), from the cell-free supernatant fluid of the phorbol diester-induced EBV-transformed human B lymphoblastoid cell line RPMI 8866. NKSF activity is mostly associated to a 70-kD anionic glycoprotein. The purified 70-kD protein, isolated from an SDS-PAGE gel, yields upon reduction two small species of molecular masses of 40 and 35 kD, suggesting that this cytokine is a heterodimer. When added to human PBL, purified NKSF preparations induce IFN-gamma production and synergize with rIL-2 in this activity, augment the NK cell-mediated cytotoxicity of PBL preparations against both NK-sensitive and NK- resistant target cell lines, and enhance the mitogenic response of T cells to mitogenic lectins and phorbol diesters. The three activities remain associated through different purification steps resulting in a 9,200-fold purification, and purified NKSF mediates the three biological activities at concentrations in the range of 0.1-10 pM. These data strongly suggest that the same molecule mediates these three activities, although the presence of traces of contaminant peptides even in the most purified NKSF preparations does not allow us to exclude the possibility that distinct biologically active molecules have been co-purified. The absence of other known cytokines in the purified NKSF preparations, the unusual molecular conformation of NKSF, the high specific activity of the purified protein, and the spectrum of biological activities distinguish NKSF from other previously described cytokines.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                February 2003
                February 13 2003
                February 2003
                : 421
                : 6924
                : 744-748
                Article
                10.1038/nature01355
                12610626
                a2b1ffc5-fd82-4c17-8e2b-5edf392043b5
                © 2003

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article