Blog
About

22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The success of pancreatic β-cells transplantation to treat type 1 diabetes has been hindered by massive β-cell dysfunction and loss of β-cells that follows the procedure. Hypoxia-mediated cell death has been considered one of the main difficulties that must be overcome for transplantation to be regarded as a reliable therapy. Here we have investigated the mechanisms underlying β-cell death in response to hypoxia (1% O 2). Our studies show that mouse insulinoma cell line 6 (Min6) cells undergo apoptosis with caspase-3 activation occurring as early as 2 h following exposure to hypoxia. Hypoxia induces endoplasmic reticulum stress in Min6 cells leading to activation of the three branches of the unfolded protein response pathway. In response to hypoxia the pro-apoptotic transcription factor C/EBP homologous protein (CHOP) is upregulated. The important role of CHOP in the apoptotic process was highlighted by the rescue of Min6 cells from hypoxia-mediated apoptosis observed in CHOP-knockdown cells. Culturing isolated pancreatic mouse islets at normoxia showed intracellular hypoxia with accumulation of hypoxia-inducible factor-1 α and upregulation of CHOP, the latter one occurring as early as 4 h after isolation. Finally, we observed that pancreatic islets of type 2 db/db diabetic mice were more hypoxic than their counterpart in normoglycemic animals. This finding indicates that hypoxia-mediated apoptosis may occur in type 2 diabetes.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.

          Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes.

            Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress.

              In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                June 2012
                14 June 2012
                1 June 2012
                : 3
                : 6
                : e322
                Affiliations
                [1 ]simpleDepartment of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
                [2 ]simpleDepartment of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes and Endocrinology, Karolinska Institutet , Stockholm, Sweden
                [3 ]simpleDepartment of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet , Stockholm, Sweden
                [4 ]simpleDepartment of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases , Osaka, Japan
                [5 ]simpleDepartment of Clinical and Experimental Pathophysiology, Osaka University, Graduate School of Pharmaceutical Sciences , Osaka, Japan
                [6 ]simpleCancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
                Author notes
                [* ]simpleDepartment of Cell and Molecular Biology, Karolinska Institutet , Von Eulers väg 3, SE-17177 Stockholm, Sweden. Tel: +46 8 5248 7331; Fax: +46 8 348819; E-mail: teresa.pereira@ 123456ki.se
                Article
                cddis201266
                10.1038/cddis.2012.66
                3388238
                22695615
                Copyright © 2012 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                Categories
                Original Article

                Cell biology

                er stress, chop, pancreatic β-cells, apoptosis, upr, hypoxia

                Comments

                Comment on this article