15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Epithelial Expression of CTGF and S100A7 with Elevated Subepithelial Expression of IL-1β in Trachomatous Trichiasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To characterize the histological appearance and expression of pro-inflammatory mediators, growth factors, matrix metalloproteinases and biomarkers of epithelial-mesenchymal transition (EMT) in healthy control and trachomatous trichiasis (TT) conjunctival tissue.

          Methods

          Conjunctival biopsies were taken from 20 individuals with TT and from 16 individuals with healthy conjunctiva, which served as controls. Study participants were of varying ethnicity and were living in a trachoma-endemic region of northern Tanzania. Formalin-fixed paraffin-embedded tissue sections were stained using hematoxylin and eosin or by immunohistochemistry using antibodies against: IL-1β, IL-6, IL-17A, IL-22, CXCL5, S100A7, cleaved caspase 1 (CC1), PDGF, CTGF, TGFβ2, MMP7, MMP9, E-cadherin, vimentin, and αSMA.

          Results

          Tissue from TT cases had a greater inflammatory cell infiltrate relative to controls and greater disruption of collagen structure. CTGF and S100A7 were more highly expressed in the epithelium and IL-1β was more highly expressed in the substantia propria of TT cases relative to controls. Latent TGFβ2 was slightly more abundant in the substantia propria of control tissue. No differences were detected between TT cases and controls in the degree of epithelial atrophy, the number of myofibroblasts or expression of EMT biomarkers.

          Conclusions

          These data indicate that the innate immune system is active in the immunopathology of trachoma, even in the absence of clinical inflammation. CTGF might provide a direct link between inflammation and fibrosis and could be a suitable target for therapeutic treatment to halt the progression of trachomatous scarring.

          Author Summary

          Progressive scarring of the conjunctiva in individuals with trachoma causes the eyelids to contract, drawing the eyelashes inwards (trichiasis) so that they scratch the cornea, causing pain and eventually blindness. Disease is initiated in childhood by repeated conjunctival infection with Chlamydia trachomatis (Ct), however, infection is not commonly found in adults, yet chronic inflammation and fibrosis progress throughout the lives of many individuals. A better understanding of the mechanisms driving inflammation and fibrosis are required in order to develop treatments to halt disease progression. The tissue expression and localization of a number of pro-inflammatory cytokines, growth and matrix factors were investigated in eyelid tissue from 20 individuals with trichiasis and from 16 control individuals. By staining tissue sections with dyes and specific antibodies, pro-inflammatory signaling molecules IL-1β and S100A7 and pro-fibrotic growth factor CTGF were found to be more highly expressed in individuals with trichiasis. CTGF and S100A7 were highly expressed in the epithelium; the outermost layer of the conjunctiva, whereas IL-1β was more highly expressed deeper in the tissue, where scarring occurs. Numerous inflammatory cells were found in the tissue of trichiasis patients even in the absence of clinically apparent inflammation. Future research should seek to describe a causative mechanism linking these factors.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis.

          IL-1beta is one of a family of proinflammatory cytokines thought to be involved in many acute and chronic diseases. Although it is considered to participate in wound repair, no major role has been attributed to IL-1beta in tissue fibrosis. We used adenoviral gene transfer to transiently overexpress IL-1beta in rat lungs after intratracheal administration. The high expression of IL-1beta in the first week after injection was accompanied by local increase of the proinflammatory cytokines IL-6 and TNF-alpha and a vigorous acute inflammatory tissue response with evidence of tissue injury. The profibrotic cytokines PDGF and TGF-beta1 were increased in lung fluid samples 1 week after peak expression of IL-1beta. Although PDGF returned to baseline in the third week, TGF-beta1 showed increased concentrations in bronchoalveolar lavage fluid for up to 60 days. This was associated with severe progressive tissue fibrosis in the lung, as shown by the presence of myofibroblasts, fibroblast foci, and significant extracellular accumulations of collagen and fibronectin. These data directly demonstrate how acute tissue injury in the lung, initiated by a highly proinflammatory cytokine, IL-1beta, converts to progressive fibrotic changes. IL-1beta should be considered a valid target for therapeutic intervention in diseases associated with fibrosis and tissue remodeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

            Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-22, not simply a Th17 cytokine.

              Interleukin-22 (IL-22) has important functions in host defense at mucosal surfaces as well as in tissue repair. It is unique as a cytokine that is produced by immune cells, including T-helper (Th) cell subsets and innate lymphocytes, but acts only on non-hematopoietic stromal cells, in particular epithelial cells, keratinocytes, and hepatocytes. Although IL-22 is beneficial to the host in many infectious and inflammatory disorders, depending on the target tissue it can be pathogenic due to its inherent pro-inflammatory properties, which are further enhanced when IL-22 is released together with other pro-inflammatory cytokines, in particular IL-17. To avoid pathology, IL-22 and IL-17 production have to be controlled tightly and independently. While common factors such as signal transducer and activator of transcription 3 (STAT3) and retinoid orphan receptor γt (RORγt) drive the expression of both cytokines, other factors, such as c-Maf act specifically on IL-22 and enable the separate expression of either cytokine. Here, we discuss the production of IL-22 from various T-cell populations as well as protective versus pathogenic roles of IL-22. Finally, we focus on recent advances in our understanding of the molecular regulation of IL-22 in T cells. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                1 June 2016
                June 2016
                : 10
                : 6
                : e0004752
                Affiliations
                [1 ]Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
                [2 ]Kilimanjaro Christian Medical Centre, Moshi, Tanzania
                [3 ]UCL Institute of Ophthalmology, London, United Kingdom
                [4 ]International Centre for Eye Health, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
                University of California San Diego School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJB MJH. Performed the experiments: TD HJ DE. Analyzed the data: TD PJL. Contributed reagents/materials/analysis tools: PM VHH PJL DE HJ MJB. Wrote the paper: TD VHH MJH MJB PJL. Collected samples: PM MJB VHH.

                Author information
                http://orcid.org/0000-0002-1458-6503
                Article
                PNTD-D-16-00072
                10.1371/journal.pntd.0004752
                4889093
                27249027
                a2ba250a-f2ce-4627-adb9-d002591c3b2e
                © 2016 Derrick et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 January 2016
                : 11 May 2016
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                Funded by: Wellcome Trust (GB)
                Award ID: 098481/Z/12/Z
                Award Recipient :
                Funded by: British Council for Prevention of Blindness (GB)
                Funded by: funder-id http://dx.doi.org/10.13039/501100000615, Fight for Sight UK;
                Award Recipient :
                This study was funded by grants from the Wellcome Trust (Grant No. 098481/Z/12/Z, http://www.wellcome.ac.uk) and the British Council for the Prevention of Blindness ( http://www.bcpb.org). TD was supported by a studentship from Fight for Sight ( http://www.fightforsight.org.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Trachoma
                Medicine and Health Sciences
                Ophthalmology
                Eye Diseases
                Trachoma
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Trachoma
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Biology and Life Sciences
                Developmental Biology
                Fibrosis
                Medicine and Health Sciences
                Endocrinology
                Endocrine Physiology
                Growth Factors
                Biology and Life Sciences
                Physiology
                Endocrine Physiology
                Growth Factors
                Medicine and Health Sciences
                Physiology
                Endocrine Physiology
                Growth Factors
                Research and Analysis Methods
                Histochemistry and Cytochemistry Techniques
                Immunohistochemistry Techniques
                Research and Analysis Methods
                Immunologic Techniques
                Immunohistochemistry Techniques
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Vimentin
                Biology and Life Sciences
                Biochemistry
                Biomarkers
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article