2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating miR-122 Is a Predictor for Virological Response in CHB Patients With High Viral Load Treated With Nucleos(t)ide Analogs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic hepatitis B (CHB) infection remains worldwide health problem. Antiviral treatment options for CHB patients include nucleos(t)ide analogs (NAs) and interferon. Most of the current biomarkers for predicting treatment response are virus-dependent. MicroRNA-122 is the most abundant liver-specific miRNA and has been identified involved in multiple liver physiology and pathology including hepatotropic virus infection. To identify the role of miR-122 in NA therapy, 80 CHB patients with high viral load (HVL) were enrolled and serum miR-122 levels at baseline, week 12 and week 24 were measured. Serum miR-122 levels were significantly lower in patients who developed virological response (VR), compared with non-VR group. Levels of miR-122 at week 12 and week 24 were determined to be independent prognostic indicators for a VR with satisfactory AUROC values at 0.812 and 0.800, respectively. During NA therapy, serum miR-122 level deceased steadily and an earlier reduction was observed in VR group, indicating early reduction of miR-122 level might increase the possibility of developing virological response. In conclusion, we identified the dynamic change of serum miR-122 level and miR-122 levels at week 12 and week 24 as independent predictors for VR in CHB patients with HVL treated with NAs.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1) -modulated P53 activity.

          Hepatitis B virus (HBV) causes chronic infection in about 350 million people worldwide. Given the important role of the most abundant liver-specific microRNA, miR-122, in hepatic function and liver pathology, here we investigated the potential role and mechanism of miR-122 in regulating HBV replication. We found that miR-122 expression in liver was significantly down-regulated in patients with HBV infection compared with healthy controls, and the miR-122 levels were negatively correlated with intrahepatic viral load and hepatic necroinflammation. The depletion of endogenous miR-122 by its antisense inhibitor led to enhanced HBV replication, whereas overexpression of miR-122 by transfection of mimic or its expression vector inhibited viral production. We next identified cyclin G(1) as an miR-122 target from multiple candidate target genes that are involved in the regulation of HBV replication. Overexpression and knockdown studies both showed that cyclin G(1) regulated viral replication in HBV transfected cells. We also observed that cyclin G(1) expression was up-regulated in HBV-infected patients, and cyclin G(1) levels were inversely associated with miR-122 expression in liver tissues. Using coimmunoprecipitation, a luciferase reporter system, and electrophoretic mobility shift assay, we further demonstrated that cyclin G(1) specifically interacted with p53, and this interaction blocked the specific binding of p53 to HBV enhancer elements and simultaneously abrogated p53-mediated inhibition of HBV transcription. Finally, we show that miR-122 suppressed HBV replication in p53 wildtype cells but not in null isogenic cells. miR-122 down-regulates its target cyclin G(1) , and thus interrupts the interaction between cyclin G(1) and p53 and abrogates p53-mediated inhibition of HBV replication. Our work shows that miR-122 down-regulation induced by HBV infection can impact HBV replication and possibly contribute to viral persistence and carcinogenesis. Copyright © 2011 American Association for the Study of Liver Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insight in the pathobiology of hepatitis B virus infection.

            Chronic hepatitis B virus (HBV) infection remains a major health burden and the main risk factor for the development of hepatocellular carcinoma worldwide. However, HBV is not directly cytopathic and liver injury appears to be mostly caused by repeated attempts of the host's immune responses to control the infection. Recent studies have shown that the unique replication strategy adopted by HBV enables it to survive within the infected hepatocyte while complex virus-host interplays ensure the virus is able to fulfil its replication requirements yet is still able to evade important host antiviral innate immune responses. Clearer understanding of the host and viral mechanisms affecting HBV replication and persistence is necessary to design more effective therapeutic strategies aimed at improving the management of patients with chronic HBV infection to eventually achieve viral eradication. This article focuses on summarising the current knowledge of factors influencing the course of HBV infection, giving emphasis on the use of novel assays and quantitative serological and intrahepatic biomarkers as tools for predicting treatment response and disease progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MiR-122 in hepatic function and liver diseases.

              As the most abundant liver-specific microRNA, microRNA-122 (miR-122) is involved in various physiological processes in hepatic function as well as in liver pathology. There is now compelling evidence that miR-122, as a regulator of gene networks and pathways in hepatocytes, plays a central role in diverse aspects of hepatic function and in the progress of liver diseases. This liver-enriched transcription factors-regulated miRNA promotes differentiation of hepatocytes and regulates lipid metabolism. With regard to liver diseases, miR-122 was shown to stimulate hepatitis C virus (HCV) replication through a unique and unusual interaction with two binding sites in the 5'-UTR of HCV genome to mediate the stability of the viral RNA, whereas inhibit the expression and replication of hepatitis B virus (HBV) by a miR-122-cylin G1/p53-HBV enhancer regulatory pathway. In addition, miR-122 acts as a suppressor of cell proliferation and malignant transformation of hepatocytes with remarkable tumor inhibition activity. Notably, a clinical trial targeting miR-122 with the anti-miR-122 oligonucleotides miravirsen, the first miRNA targeted drug, has been initiated for treatment of HCV infection. With further understanding of the comprehensive roles of miR-122 in hepatic functions and the mechanisms involved in miR-122 down-regulation in chronic hepatitis or hepatocellular carcinoma, miR-122 appears to be a promising candidate for effective therapeutic approaches against tumor and infectious diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                22 March 2019
                2019
                : 10
                : 243
                Affiliations
                [1] 1State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University , Guangzhou, China
                [2] 2Department of Pathology, Sun Yat-sen University Cancer Center , Guangzhou, China
                Author notes

                Edited by: Anthony Griffiths, Boston University, United States

                Reviewed by: Igor Jurak, University of Rijeka, Croatia; Nicoletta Potenza, Università degli Studi della Campania “Luigi Vanvitelli”, Italy

                *Correspondence: Jie Peng, pjie138@ 123456163.com

                This article was submitted to RNA, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2019.00243
                6440383
                a2e0c5ba-281a-4e88-accb-458479f44666
                Copyright © 2019 Wu, Gao, Cai, Xia, Liao, Zhang and Peng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2018
                : 04 March 2019
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 32, Pages: 7, Words: 0
                Categories
                Genetics
                Original Research

                Genetics
                microrna-122,chronic hepatitis b,virological response,high viral load,nucleos(t)ide analogs

                Comments

                Comment on this article