122
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis

      review-article
      ,
      Frontiers in Pharmacology
      Frontiers Media S.A.
      iron, macrophages, atherosclerosis, inflammation, lipid metabolism

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron is an essential mineral needed for normal physiologic processes. While its function in oxygen transport and other important physiologic processes is well known, less is understood about its role in inflammatory diseases such as atherosclerosis. Existing paradigms suggest iron as a driver of atherosclerosis through its actions as a pro-oxidant capable of causing lipid oxidation and tissue damage. Recently we and others have identified hemoglobin (Hb) derived iron as an important factor in determining macrophage differentiation and function in areas of intraplaque hemorrhage within human atherosclerosis. Hb associated macrophages, M(Hb), are distinct from traditional macrophage foam cells because they do not contain large amounts of lipid or inflammatory cytokines, are characterized by high levels of expression of mannose receptor (CD206) and CD163 in addition to producing anti-inflammatory cytokines such as IL-10. Despite the well-known role of iron as an catalyst capable of producing lipid peroxidation through generation of reactive oxygen species (ROS) such as hydroxyl radical, we and others have shown that macrophages in areas of intraplaque hemorrhage demonstrate reduced intracellular iron and ROS which triggers production of anti-inflammatory cytokines as well as genes involved in cholesterol efflux. These data suggest that manipulation of macrophage iron itself may be a promising pharmacologic target for atherosclerosis prevention through its effects on macrophage inflammation and lipid metabolism. In this review we will summarize the current understanding of iron as it relates to plaque inflammation and discuss how further exploration of this subject may lead to new therapies for atherosclerosis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism.

          Bone morphogenetic protein (BMP) signals coordinate developmental patterning and have essential physiological roles in mature organisms. Here we describe the first known small-molecule inhibitor of BMP signaling-dorsomorphin, which we identified in a screen for compounds that perturb dorsoventral axis formation in zebrafish. We found that dorsomorphin selectively inhibits the BMP type I receptors ALK2, ALK3 and ALK6 and thus blocks BMP-mediated SMAD1/5/8 phosphorylation, target gene transcription and osteogenic differentiation. Using dorsomorphin, we examined the role of BMP signaling in iron homeostasis. In vitro, dorsomorphin inhibited BMP-, hemojuvelin- and interleukin 6-stimulated expression of the systemic iron regulator hepcidin, which suggests that BMP receptors regulate hepcidin induction by all of these stimuli. In vivo, systemic challenge with iron rapidly induced SMAD1/5/8 phosphorylation and hepcidin expression in the liver, whereas treatment with dorsomorphin blocked SMAD1/5/8 phosphorylation, normalized hepcidin expression and increased serum iron levels. These findings suggest an essential physiological role for hepatic BMP signaling in iron-hepcidin homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferritin: a cytoprotective antioxidant strategem of endothelium.

            Phagocyte-mediated oxidant damage to vascular endothelium is likely involved in various vasculopathies including atherosclerosis and pulmonary leak syndromes such as adult respiratory distress syndrome. We have shown that heme, a hydrophobic iron chelate, is rapidly incorporated into endothelial cells where, after as little as 1 h, it markedly aggravates cytotoxicity engendered by polymorphonuclear leukocyte oxidants or hydrogen peroxide (H2O2). In contrast, however, if cultured endothelial cells are briefly pulsed with heme and then allowed to incubate for a prolonged period (16 h), the cells become highly resistant to oxidant-mediated injury and to the accumulation of endothelial lipid peroxidation products. This protection is associated with the induction within 4 h of mRNAs for both heme oxygenase and ferritin. After 16 h heme oxygenase and ferritin have increased approximately 50-fold and 10-fold, respectively. Differential induction of these proteins determined that ferritin is probably the ultimate cytoprotectant. Ferritin inhibits oxidant-mediated cytolysis in direct relation to its intracellular concentration. Apoferritin, when added to cultured endothelial cells, is taken up in a dose-responsive manner and appears as cytoplasmic granules by immunofluorescence; in a similar dose-responsive manner, added apoferritin protects endothelial cells from oxidant-mediated cytolysis. Conversely, a site-directed mutant of ferritin (heavy chain Glu62----Lys; His65----Gly) which lacks ferroxidase activity and is deficient in iron sequestering capacity, is completely ineffectual as a cytoprotectant. We conclude that endothelium and perhaps other cell types may be protected from oxidant damage through the iron sequestrant, ferritin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pro-oxidant and cytotoxic effects of circulating heme.

              Numerous pathologies may involve toxic side effects of free heme and heme-derived iron. Deficiency of the heme-catabolizing enzyme, heme oxygenase-1 (HO-1), in both a human patient and transgenic knockout mice leads to an abundance of circulating heme and damage to vascular endothelium. Although heme can be directly cytotoxic, the present investigations examine the possibility that hemoglobin-derived heme and iron might be indirectly toxic through the generation of oxidized forms of low-density lipoprotein (LDL). In support, hemoglobin in plasma, when oxidized to methemoglobin by oxidants such as leukocyte-derived reactive oxygen, causes oxidative modification of LDL. Heme, released from methemoglobin, catalyzes the oxidation of LDL, which in turn induces endothelial cytolysis primarily caused by lipid hydroperoxides. Exposure of endothelium to sublethal concentrations of this oxidized LDL leads to induction of both HO-1 and ferritin. Similar endothelial cytotoxicity was caused by LDL isolated from plasma of an HO-1-deficient child. Spectral analysis of the child's plasma revealed a substantial oxidation of plasma hemoglobin to methemoglobin. Iron accumulated in the HO-1-deficient child's LDL and several independent assays revealed oxidative modification of the LDL. We conclude that hemoglobin, when oxidized in plasma, can be indirectly cytotoxic through the generation of oxidized LDL by released heme and that, in response, the intracellular defense-HO-1 and ferritin-is induced. These results may be relevant to a variety of disorders-such as renal failure associated with intravascular hemolysis, hemorrhagic injury to the central nervous system, and, perhaps, atherogenesis-in which hemoglobin-derived heme may promote the formation of fatty acid hydroperoxides.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                20 June 2014
                27 August 2014
                2014
                : 5
                : 195
                Affiliations
                [1]Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
                Author notes

                Edited by: Raffaella Gozzelino, Instituto Gulbenkian de Ciência, Portugal

                Reviewed by: Jozsef Balla, University of Debrecen – Medical and Health Science Center, Hungary; Joseph J. Boyle, Imperial College London, UK

                *Correspondence: Aloke V. Finn, Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 319B, Atlanta, GA 30322, USA e-mail: avfinn@ 123456emory.edu

                This article was submitted to Drug Metabolism and Transport, a section of the journal Frontiers in Pharmacology.

                Article
                10.3389/fphar.2014.00195
                4145350
                25221512
                a2ed7d77-0864-4d8f-b918-f4d0097f4bc9
                Copyright © 2014 Habib and Finn.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 May 2014
                : 04 August 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 36, Pages: 6, Words: 0
                Categories
                Pharmacology
                Mini Review Article

                Pharmacology & Pharmaceutical medicine
                iron,macrophages,atherosclerosis,inflammation,lipid metabolism

                Comments

                Comment on this article