26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays.

          From May to December 1997, 18 cases of mild to severe respiratory illness caused by avian influenza A (H5N1) viruses were identified in Hong Kong. The emergence of an avian virus in the human population prompted an epidemiological investigation to determine the extent of human-to-human transmission of the virus and risk factors associated with infection. The hemagglutination inhibition (HI) assay, the standard method for serologic detection of influenza virus infection in humans, has been shown to be less sensitive for the detection of antibodies induced by avian influenza viruses. Therefore, we developed a more sensitive microneutralization assay to detect antibodies to avian influenza in humans. Direct comparison of an HI assay and the microneutralization assay demonstrated that the latter was substantially more sensitive in detecting human antibodies to H5N1 virus in infected individuals. An H5-specific indirect enzyme-linked immunosorbent assay (ELISA) was also established to test children's sera. The sensitivity and specificity of the microneutralization assay were compared with those of an H5-specific indirect ELISA. When combined with a confirmatory H5-specific Western blot test, the specificities of both assays were improved. Maximum sensitivity (80%) and specificity (96%) for the detection of anti-H5 antibody in adults aged 18 to 59 years were achieved by using the microneutralization assay combined with Western blotting. Maximum sensitivity (100%) and specificity (100%) in detecting anti-H5 antibody in sera obtained from children less than 15 years of age were achieved by using ELISA combined with Western blotting. This new test algorithm is being used for the seroepidemiologic investigations of the avian H5N1 influenza outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals.

            The spread of highly pathogenic avian influenza H5N1 viruses across Asia in 2003 and 2004 devastated domestic poultry populations and resulted in the largest and most lethal H5N1 virus outbreak in humans to date. To better understand the potential of H5N1 viruses isolated during this epizootic event to cause disease in mammals, we used the mouse and ferret models to evaluate the relative virulence of selected 2003 and 2004 H5N1 viruses representing multiple genetic and geographical groups and compared them to earlier H5N1 strains isolated from humans. Four of five human isolates tested were highly lethal for both mice and ferrets and exhibited a substantially greater level of virulence in ferrets than other H5N1 viruses isolated from humans since 1997. One human isolate and all four avian isolates tested were found to be of low virulence in either animal. The highly virulent viruses replicated to high titers in the mouse and ferret respiratory tracts and spread to multiple organs, including the brain. Rapid disease progression and high lethality rates in ferrets distinguished the highly virulent 2004 H5N1 viruses from the 1997 H5N1 viruses. A pair of viruses isolated from the same patient differed by eight amino acids, including a Lys/Glu disparity at 627 of PB2, previously identified as an H5N1 virulence factor in mice. The virus possessing Glu at 627 of PB2 exhibited only a modest decrease in virulence in mice and was highly virulent in ferrets, indicating that for this virus pair, the K627E PB2 difference did not have a prevailing effect on virulence in mice or ferrets. Our results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses. However, the apparent enhancement of virulence of these viruses in humans in 2004 was better reflected in the ferret.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterologous protection against influenza by injection of DNA encoding a viral protein.

              Cytotoxic T lymphocytes (CTLs) specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific. The generation of such CTLs in vivo usually requires endogenous expression of the antigen, as occurs in the case of virus infection. To generate a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors, plasmid DNA encoding influenza A nucleoprotein was injected into the quadriceps of BALB/c mice. This resulted in the generation of nucleoprotein-specific CTLs and protection from a subsequent challenge with a heterologous strain of influenza A virus, as measured by decreased viral lung titers, inhibition of mass loss, and increased survival.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                23 March 2010
                : 5
                : 3
                : e9812
                Affiliations
                [1 ]Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [3 ]Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
                [4 ]BIOQUAL, Inc., Rockville, Maryland, United States of America
                Statens Serum Institute, Denmark
                Author notes

                Conceived and designed the experiments: SSR GJN. Performed the experiments: WPK CJW NVH HA TMT. Analyzed the data: SSR WPK CJW JPG MN GJN. Contributed reagents/materials/analysis tools: TMT. Wrote the paper: SSR WPK CJW JPG HA TMT GJN.

                Article
                09-PONE-RA-14981R1
                10.1371/journal.pone.0009812
                2843722
                20352112
                a2ef7432-2ad5-4cc3-9065-f68a690855b3
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 17 December 2009
                : 2 March 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Immunology
                Infectious Diseases
                Microbiology
                Virology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article