1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustainable Copper Electrochemical Stripping onto a Paper-Based Substrate for Clinical Application

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electroanalytical field has exploited great advantages in using paper-based substrates, even if the word “paper” might be general. In fact, the mainly adopted paper-based substrates are often chromatographic and office ones. They are characterized by the following main features (and drawbacks): chromatographic paper is well-established for storing reagents/treating samples, but the sensitivity compared to traditional screen-printed ones is lower (due to porosity), while office paper represents a sustainable alternative to plastic (with similar sensitivity), but its porosity is not enough to load reagents. To overcome the limitations that might arise due to the adoption of a type of individual paper-based substrate, herein, we describe for the first time the development of a two-dimensional merged paper-based device for electrochemical copper ion detection in serum. In this work, we report a novel configuration to produce an integrated all-in-one electrochemical device, in which no additional working medium has to be added by the end user and the sensitivity can be tuned by rapid preconcentration on porous paper, with the advantage of making the platform adaptable to real matrix scenarios. The novel architecture has been obtained by combining office paper to screen-print a sustainable and robust electrochemical strip and a chromatographic disk to (1) store the reagents, (2) collect real samples, and (3) preconcentrate the analyte of interest. The novel sensing platform has allowed us to obtain a detection limit for copper ions down to 4 ppb in all the solutions that have been investigated, namely, standard solutions and serum, and a repeatability of ca. 10% has been obtained. Inductively coupled plasma-mass spectrometry measurements confirmed the satisfactory correlation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Electrochemical detection for paper-based microfluidics.

          We report the first demonstration of electrochemical detection for paper-based microfluidic devices. Photolithography was used to make microfluidic channels on filter paper, and screen-printing technology was used to fabricate electrodes on the paper-based microfluidic devices. Screen-printed electrodes on paper were characterized using cyclic voltammetry to demonstrate the basic electrochemical performance of the system. The utility of our devices was then demonstrated with the determination of glucose, lactate, and uric acid in biological samples using oxidase enzyme (glucose oxidase, lactate oxidase, and uricase, respectively) reactions. Oxidase enzyme reactions produce H2O2 while decomposing their respective substrates, and therefore a single electrode type is needed for detection of multiple species. Selectivity of the working electrode for H2O2 was improved using Prussian Blue as a redox mediator. The determination of glucose, lactate, and uric acid in control serum samples was performed using chronoamperometry at the optimal detection potential for H2O2 (0 V versus the on-chip Ag/AgCl reference electrode). Levels of glucose and lactate in control serum samples measured using the paper devices were 4.9 +/- 0.6 and 1.2 +/- 0.2 mM (level I control sample), and 16.3 +/- 0.7 and 3.2 +/- 0.3 mM (level II control sample), respectively, and were within error of the values measured using traditional tests. This study shows the successful integration of paper-based microfluidics and electrochemical detection as an easy-to-use, inexpensive, and portable alternative for point of care monitoring.
            • Record: found
            • Abstract: found
            • Article: not found

            Copper, oxidative stress, and human health.

            Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
              • Record: found
              • Abstract: not found
              • Article: not found

              Requirements for high impact diagnostics in the developing world.

                Author and article information

                Journal
                ACS Meas Sci Au
                ACS Meas Sci Au
                tg
                amachv
                ACS Measurement Science Au
                American Chemical Society
                2694-250X
                14 January 2022
                20 April 2022
                : 2
                : 2
                : 177-184
                Affiliations
                []Department of Pharmacy, University of Naples “Federico II” , Via D. Montesano 49, Naples 80131, Italy
                []Department of Chemical Sciences, University of Naples Federico II , Naples 80126, Italy
                [§ ]BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II , Naples 80055, Italy
                Author notes
                Author information
                https://orcid.org/0000-0002-8274-7452
                Article
                10.1021/acsmeasuresciau.1c00059
                9838819
                36785726
                a2f06ebc-cbf4-461b-85e8-61e9b169d5b8
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article
                Custom metadata
                tg1c00059
                tg1c00059

                electrochemical sensor,screen-printed electrodes,paper-based,office paper,chromatographic paper,gold nanoparticles,copper ions,serum

                Comments

                Comment on this article

                Related Documents Log