31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microglia in Retinal Degeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Local self-renewal can sustain CNS microglia maintenance and function throughout adult life.

          Microgliosis is a common response to multiple types of damage in the CNS. However, the origin of the cells involved in this process is still controversial and the relative importance of local expansion versus recruitment of microglia progenitors from the bloodstream is unclear. Here, we investigated the origin of microglia using chimeric animals obtained by parabiosis. We found no evidence of microglia progenitor recruitment from the circulation in denervation or CNS neurodegenerative disease, suggesting that maintenance and local expansion of microglia are solely dependent on the self-renewal of CNS resident cells in these models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electroporation and RNA interference in the rodent retina in vivo and in vitro.

            The large number of candidate genes made available by comprehensive genome analysis requires that relatively rapid techniques for the study of function be developed. Here, we report a rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina. Plasmid DNA directly injected into the subretinal space of neonatal rodent pups was taken up by a significant fraction of exposed cells after several pulses of high voltage. With this technique, GFP expression vectors were efficiently transfected into retinal cells with little damage to the operated pups. Transfected GFP allowed clear visualization of cell morphologies, and the expression persisted for at least 50 days. DNA-based RNA interference vectors directed against two transcription factors important in photoreceptor development led to photoreceptor phenotypes similar to those of the corresponding knockout mice. Reporter constructs carrying retinal cell type-specific promoters were readily introduced into the retina in vivo, where they exhibited the appropriate expression patterns. Plasmid DNA was also efficiently transfected into retinal explants in vitro by high-voltage pulses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minocycline: far beyond an antibiotic.

              Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 August 2019
                2019
                : 10
                : 1975
                Affiliations
                [1] 1Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne, Germany
                [2] 2Center for Molecular Medicine Cologne , Cologne, Germany
                Author notes

                Edited by: Heping Xu, Queen's University Belfast, United Kingdom

                Reviewed by: Wai T. Wong, National Eye Institute (NEI), United States; Przemyslaw Sapieha, Université de Montréal, Canada

                *Correspondence: Thomas Langmann thomas.langmann@ 123456uk-koeln.de

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.01975
                6710350
                31481963
                a311ce8a-5175-46a7-a111-1c8f361d7aeb
                Copyright © 2019 Rashid, Akhtar-Schaefer and Langmann.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 May 2019
                : 05 August 2019
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 252, Pages: 19, Words: 16929
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Funded by: Velux Stiftung 10.13039/100007214
                Funded by: Deutscher Akademischer Austauschdienst 10.13039/501100001655
                Categories
                Immunology
                Review

                Immunology
                retina,microglia,neuroprotection,chronic inflammation,immunomodulation
                Immunology
                retina, microglia, neuroprotection, chronic inflammation, immunomodulation

                Comments

                Comment on this article