11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Qingxin kaiqiao fang ameliorates memory impairment and inhibits apoptosis in APP/PS1 double transgenic mice through the MAPK pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Qingxin kaiqiao fang (QKF) has been found to treat Alzheimer’s disease (AD) through apoptosis inhibition. The mitogen-activated protein kinase (MAPK) pathway is closely related to apoptosis in the course of AD. This study aimed to investigate whether QKF-induced apoptosis depression is achieved through MAPK pathway.

          Materials and methods

          C57BL/6 J and APP/PS1 mice were used as control and model groups. APP/PS1 mice were treated with different dosages of QKF (4.75, 9.5, and 19 g⋅kg −1⋅d −1⋅ig, respectively) for 12 weeks as L-QKF, M-QKF, and H-QKF groups. The M-QKF-treated APP/ PS1 mice were administrated with 2 µg/kg of U46619 and saline, intra ventricular ventricle injection, as M-QKF+U46619 and M-QKF+saline groups and were injected with PD98059 0.3 mg/kg and the same volume of dimethyl sulfoxide (DMSO), intravenous, as M-QKF+PD98059 and M-QKF+DMSO groups. After 12 weeks treatment, Morris water maze was performed for behavior study. Pathological degeneration was examined by H&E staining, Nissl staining, and transmission electron microscope observation of hippocampus; immunohistochemistry and Western blot (WB) were tested for amyloid β (Aβ) expression. Apoptosis was measured through TUNEL assay; Bax, Bcl-2, and caspase-3 expression through WB; and cleaved caspase-3 expression through ELISA. MAPK pathway was detected via WB for the expressions of ERK1/2, JNK, and p38 MAPK and their phosphorylation patterns.

          Results

          QKF improved the learning and memory capability, as well as inhibited neuronal apoptosis and then reduced the pathological degeneration of APP/PS1 mice. M-QKF reduced neuron apoptosis by inhibiting p38 MAPK and activating ERK1/2 but had no significant effect on JNK.

          Conclusion

          QKF, especially at the middle dose, alleviated the learning and memory impairment and played an antiapoptotic role in AD through MAPK pathways.

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A review on Alzheimer's disease pathophysiology and its management: an update.

          Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival.

            Mitogen-activated protein kinase (MAPK) pathways constitute a large modular network that regulates a variety of physiological processes, such as cell growth, differentiation, and apoptotic cell death. The function of the ERK pathway has been depicted as survival-promoting, in essence by opposing the proapoptotic activity of the stress-activated c-Jun NH(2)-terminal kinase (JNK)/p38 MAPK pathways. However, recently published work suggests that extracellular regulated kinase (ERK) pathway activity is suppressed by JNK/p38 kinases during apoptosis induction. In this review, we will summarize the current knowledge about JNK/p38-mediated mechanisms that negatively regulate the ERK pathway. In particular, we will focus on phosphatases (PP2A, MKPs) as inhibitors of ERK pathway activity in regulating apoptosis. A model proposed in this review places the negative regulation of the ERK pathway in a central position for the cellular decision-making process that determines whether cells will live or die in response to apoptosis-promoting signals. In addition, we will discuss the potential functional relevance of negative regulation of ERK pathway activity, for physiological and pathological conditions (e.g., cellular transformation).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation.

              Autophagy and apoptosis are fundamental cellular pathways that are both regulated by JNK-mediated Bcl-2 phosphorylation. Several years ago, JNK-mediated Bcl-2 phosphorylation was shown to interfere with its binding to proapoptotic BH3 domain-containing proteins such as Bax and recently, our laboratory demonstrated that JNK1-mediated Bcl-2 phosphorylation interferes with its binding to the proautophagy BH3 domain-containing protein Beclin 1. Here, we examined the kinetic relationship between Bcl-2 phosphorylation, Bcl-2-Beclin 1 interactions, Bcl-2-Bax interactions, and caspase 3 activation during nutrient starvation. We found that after a short period of nutrient deprivation (4 hours), a small amount of Bcl-2 phosphorylation dissociates Bcl-2 from the Bcl-2-Beclin 1 complex but not from the Bcl-2-Bax complex. After 16 hours of nutrient deprivation, Bcl-2 phosphorylation reaches maximal levels, the Bcl-2-Bax complex is disrupted, and active caspase 3 is detected, indicating the initiation of apoptosis. Based on this result, we propose a speculative model for understanding the interrelationship between autophagy and apoptosis regulated by JNK1-mediated Bcl-2 phosphorylation. According to this model, rapid Bcl-2 phosphorylation may occur initially to promote cell survival by disrupting the Bcl-2-Beclin 1 complex and activating autophagy. At a certain point when autophagy is no longer able to keep the cell alive, Bcl-2 phosphorylation might then serve to inactivate its antiapoptotic function.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2019
                23 January 2019
                : 13
                : 459-475
                Affiliations
                [1 ]Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China, wyykdxzyk@ 123456163.com
                [2 ]The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325003, China, wyykdxzyk@ 123456163.com
                [3 ]Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
                [4 ]Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
                Author notes
                Correspondence: Haiyan Hu, Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325000, Zhejiang, China, Tel +86 577 8800 2885, Email wyykdxzyk@ 123456163.com
                Article
                dddt-13-459
                10.2147/DDDT.S188505
                6350643
                a3167e91-df33-4c65-adb4-d349a8bd5cfd
                © 2019 Gao et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                qingxin kaiqiao,alzheimer’s disease,apoptosis,app,ps1 mice,mapk

                Comments

                Comment on this article