25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Feasibility and Cost-Effectiveness of Treating Multidrug-Resistant Tuberculosis: A Cohort Study in the Philippines

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multidrug-resistant tuberculosis (MDR-TB) is an important global health problem, and a control strategy known as DOTS-Plus has existed since 1999. However, evidence regarding the feasibility, effectiveness, cost, and cost-effectiveness of DOTS-Plus is still limited.

          Methodology/Principal Findings

          We evaluated the feasibility, effectiveness, cost, and cost-effectiveness of a DOTS-Plus pilot project established at Makati Medical Center in Manila, the Philippines, in 1999. Patients with MDR-TB are treated with regimens, including first- and second-line drugs, tailored to their drug susceptibility pattern (i.e., individualised treatment). We considered the cohort enrolled between April 1999 and March 2002. During this three-year period, 118 patients were enrolled in the project; 117 were considered in the analysis. Seventy-one patients (61%) were cured, 12 (10%) failed treatment, 18 (15%) died, and 16 (14%) defaulted. The average cost per patient treated was US$3,355 from the perspective of the health system, of which US$1,557 was for drugs, and US$837 from the perspective of patients. The mean cost per disability-adjusted life year (DALY) gained by the DOTS-Plus project was US$242 (range US$85 to US$426).

          Conclusions

          Treatment of patients with MDR-TB using the DOTS-Plus strategy and individualised drug regimens can be feasible, comparatively effective, and cost-effective in low- and middle-income countries.

          Abstract

          Evaluation of 117 patients enrolled in a DOTS-Plus pilot project in the Philippines showed that in this setting the strategy is feasible.

          Editors' Summary

          Background.

          Tuberculosis (TB) causes the death of some 2 million people each year. An estimated one in three people worldwide are infected with Mycobacterium tuberculosis, the bacterium that causes the disease. Because single-drug treatment leads to treatment failure and antibiotic resistance, treatment for active TB is complicated, usually involving four different antibiotics, at least two of which are continued for six months or more. The World Health Organization (WHO) recommends a specific strategy (DOTS) for diagnosing and treating TB (see Web link below).

          The DOTS approach includes standard regimens of first-line drugs which cure about 90% of patients with drug-susceptible TB, and which cost as little as US$10 per patient. Unfortunately, TB resistance to at least two of the most effective DOTS drugs has developed at sites in both industrialized and developing countries, causing approximately 460,000 cases of multidrug-resistant TB (MDR-TB) per year. Second-line antibiotics, which tend to be more expensive or more difficult to take, can effectively treat many cases of MDR-TB. “DOTS-Plus” programmes, which use combinations of first- and second-line drugs to treat MDR-TB, are therefore becoming increasingly important in controlling TB worldwide. A recent study found DOTS-Plus strategies to be cost-effective in Peru, but cure rates of MDR-TB were relatively low.

          Why Was This Study Done?

          Because the use of second-line antibiotics is costly and the treatment of MDR-TB has a higher failure rate than that of fully drug-susceptible TB, policymakers responsible for allocation of limited healthcare resources need information on how well DOTS-Plus programmes work and how much they cost to operate. This study was undertaken to assess the feasibility, effectiveness, and cost-effectiveness of a DOTS-Plus project in the Philippines, a lower middle–income country with a high rate of TB and approximately 25,000 cases of MDR-TB.

          What Did the Researchers Do and Find? 

          The researchers reported on a DOTS-Plus pilot project at Makati Medical Center in Manila, analyzing information from 118 patients enrolled in the project between 1999 and 2002. The diagnosis of MDR-TB was based on laboratory culture and antibiotic resistance testing of specimens from patients who had continued symptoms of TB following DOTS treatment, or other evidence of possible MDR-TB. Patients were treated with five-drug combinations individually selected based on resistance testing results, and administered under direct observation. After cultures had remained consistently negative for six months, patients were switched to a four-drug regimen with intermittent clinic observation until cultures remained negative for at least 18 months.

          Cost-effectiveness was assessed by comparing the costs and effects of the project to the costs and effects that would have applied in the absence of the project, namely, no treatment of MDR-TB (except what patients could have purchased privately), or standard first-line DOTS treatment (which would not cure the majority of patients with MDR-TB, and is associated with a high chance of relapse in those who do appear cured). Costs of the DOTS-Plus project were based on expenditure records, project records, and interviews with staff, patients, and funding agencies. Effects of the project were based on treatment outcomes observed among enrolled patients, as well as on data on long-term outcomes among patients treated for MDR-TB in the US who were followed for up to ten years. Treatment costs for the situation in which no DOTS-Plus project exists were estimated using national data reported to WHO, as well as questionnaires administered to local patients in whom DOTS treatment had failed. Treatment outcomes where DOTS-Plus is not available were estimated from studies done in other TB-affected countries.

          The researchers found that the cure rate of MDR-TB in this project was 61%. The cost per patient treated was US$4,192. They also calculated that the cost-effectiveness of the DOTS-Plus strategy was US$242 per disability-adjusted life year (DALY) gained, of which US$179 was paid by the healthcare system.

          What Do These Findings Mean?

          The cure rate for MDR-TB in this project compares favourably to rates in other resource-limited settings where second-line TB drugs are used, and is much higher than in areas where these drugs are not available. From the standpoint of efficacy and patient well-being, then, this study supports the necessity of DOTS-Plus treatment. In purely economic terms, the cost of US$200–US$250 per DALY gained is cost-effective in comparison with other healthcare interventions. Specifically, because the gross national income per person in the Philippines is US$1,080, someone who can return to work following MDR-TB treatment costing US$250 per year gained of working life will provide work that is worth four times more, on average, than the cost of the treatment.

          Although this study provides encouraging confirmation that DOTS-Plus programmes can be effective and cost-effective in a resource-limited setting, these findings are subject to several limitations. First, the data used to estimate treatment outcomes and the costs associated with chronic MDR-TB when DOTS-Plus treatment is not available were limited. Also, the pilot project in this study included only 118 of 171 eligible patients, leaving open the possibility that the other 53 patients might have had different outcomes. In addition, the long-term relapse rate in the treated patients is unknown. Finally, the conclusion that one model programme is effective does not mean that other programmes will do well under less favourable circumstances. Nonetheless, as MDR-TB continues to spread in the developing world, a good example is good news. A Perspective by Paul Garner and colleagues in this issue of PLoS Medicine (DOI: 10.1371/journal.pmed.0030350) discusses the study further.

          Additional Information. 

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030352.

          • Basic information about tuberculosis can be found on the Web site of the US National Institute of Allergy and Infectious Diseases (NIAID)

          • The Web site of the World Health Organization's Stop TB department outlines both the DOTS and DOTS-Plus strategies

          • TB Alert, a UK-based charity that promotes TB awareness worldwide, has information on TB in several European, African, and Asian languages

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Book: not found

          The global burden for disease: A comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            World Development Report 1993

            (1993)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru.

              Despite the prevalence of multidrug-resistant tuberculosis in nearly all low-income countries surveyed, effective therapy has been deemed too expensive and considered not to be feasible outside referral centers. We evaluated the results of community-based therapy for multidrug-resistant tuberculosis in a poor section of Lima, Peru. We describe the first 75 patients to receive ambulatory treatment with individualized regimens for chronic multidrug-resistant tuberculosis in northern Lima. We conducted a retrospective review of the charts of all patients enrolled in the program between August 1, 1996, and February 1, 1999, and identified predictors of poor outcomes. The infecting strains of Mycobacterium tuberculosis were resistant to a median of six drugs. Among the 66 patients who completed four or more months of therapy, 83 percent (55) were probably cured at the completion of treatment. Five of these 66 patients (8 percent) died while receiving therapy. Only one patient continued to have positive cultures after six months of treatment. All patients in whom treatment failed or who died had extensive bilateral pulmonary disease. In a multiple Cox proportional-hazards regression model, the predictors of the time to treatment failure or death were a low hematocrit (hazard ratio, 4.09; 95 percent confidence interval, 1.35 to 12.36) and a low body-mass index (hazard ratio, 3.23; 95 percent confidence interval, 0.90 to 11.53). Inclusion of pyrazinamide and ethambutol in the regimen (when susceptibility was confirmed) was associated with a favorable outcome (hazard ratio for treatment failure or death, 0.30; 95 percent confidence interval, 0.11 to 0.83). Community-based outpatient treatment of multidrug-resistant tuberculosis can yield high cure rates even in resource-poor settings. Early initiation of appropriate therapy can preserve susceptibility to first-line drugs and improve treatment outcomes. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                September 2006
                12 September 2006
                : 3
                : 9
                : e352
                Affiliations
                [1 ] Tropical Disease Foundation, Manila, Philippines
                [2 ] Stop TB Department, World Health Organization, Geneva, Switzerland
                [3 ] Stanford University School of Medicine, Stanford, California, United States of America
                [4 ] Infectious Disease Office, National Center for Disease Prevention and Control, Department of Health, Manila, Philippines
                University of California San Francisco, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: floydk@ 123456who.int
                Article
                05-PLME-RA-0629R2 e352 plme-03-09-11
                10.1371/journal.pmed.0030352
                1564168
                16968123
                a31a2d44-a24b-4c2c-a6de-7708ea43088e
                Copyright: © 2006 Tupasi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 November 2005
                : 2 June 2006
                Page count
                Pages: 10
                Categories
                Research Article
                Infectious Diseases
                Microbiology
                Science Policy
                Epidemiology/Public Health
                Health Economics
                Health Policy
                HIV/AIDS
                Respiratory Medicine
                Tuberculosis
                Epidemiology
                Health Economics
                Custom metadata
                Tupasi TE, Gupta R, Quelapio MID, Orillaza RB, Mira NR, et al. (2006) Feasibility and cost-effectiveness of treating multidrug-resistant tuberculosis: A cohort study in the Philippines. PLoS Med 3(9): e352. DOI: 10.1371/journal.pmed.0030352

                Medicine
                Medicine

                Comments

                Comment on this article