158
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.

          On activation, naive T cells differentiate into effector T-cell subsets with specific cytokine phenotypes and specialized effector functions. Recently a subset of T cells, distinct from T helper (T(H))1 and T(H)2 cells, producing interleukin (IL)-17 (T(H)17) was defined and seems to have a crucial role in mediating autoimmunity and inducing tissue inflammation. We and others have shown that transforming growth factor (TGF)-beta and IL-6 together induce the differentiation of T(H)17 cells, in which IL-6 has a pivotal function in dictating whether T cells differentiate into Foxp3+ regulatory T cells (T(reg) cells) or T(H)17 cells. Whereas TGF-beta induces Foxp3 and generates T(reg) cells, IL-6 inhibits the generation of T(reg) cells and induces the production of IL-17, suggesting a reciprocal developmental pathway for T(H)17 and T(reg) cells. Here we show that IL-6-deficient (Il6-/-) mice do not develop a T(H)17 response and their peripheral repertoire is dominated by Foxp3+ T(reg) cells. However, deletion of T(reg) cells leads to the reappearance of T(H)17 cells in Il6-/- mice, suggesting an additional pathway by which T(H)17 cells might be generated in vivo. We show that an IL-2 cytokine family member, IL-21, cooperates with TGF-beta to induce T(H)17 cells in naive Il6-/- T cells and that IL-21-receptor-deficient T cells are defective in generating a T(H)17 response.
            • Record: found
            • Abstract: found
            • Article: not found

            A fundamental role for interleukin-21 in the generation of T follicular helper cells.

            T cell help to B cells is a fundamental property of adaptive immunity, yet only recently have many of the cellular and molecular mechanisms of T cell help emerged. T follicular helper (Tfh) cells are the CD4(+) T helper cells that provide cognate help to B cells for high-affinity antibody production in germinal centers (GC). Tfh cells produce interleukin-21 (IL-21), and we show that IL-21 was necessary for GC formation. However, the central role of IL-21 in GC formation reflected its effects on Tfh cell generation rather than on B cells. Expression of the inducible costimulator (ICOS) was necessary for optimal production of IL-21, indicative of interplay between these two Tfh cell-expressed molecules. Finally, we demonstrate that IL-21's costimulatory capacity for T helper cell differentiation operated at the level of the T cell receptor signalosome through Vav1, a signaling molecule that controls T cell helper function. This study reveals a previously unappreciated role for Tfh cells in the formation of the GC and isotype switching through a CD4(+) T cell-intrinsic requirement for IL-21.
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice.

              Interleukin 17 (IL-17) is a cytokine associated with inflammation, autoimmunity and defense against some bacteria. Here we show that IL-17 can promote autoimmune disease through a mechanism distinct from its proinflammatory effects. As compared with wild-type mice, autoimmune BXD2 mice express more IL-17 and show spontaneous development of germinal centers (GCs) before they increase production of pathogenic autoantibodies. We show that blocking IL-17 signaling disrupts CD4+ T cell and B cell interactions required for the formation of GCs and that mice lacking the IL-17 receptor have reduced GC B cell development and humoral responses. Production of IL-17 correlates with upregulated expression of the genes Rgs13 and Rgs16, which encode regulators of G-protein signaling, and results in suppression of the B cell chemotactic response to the chemokine CXCL12. These findings suggest a mechanism by which IL-17 drives autoimmune responses by promoting the formation of spontaneous GCs.

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 February 2010
                : 207
                : 2
                : 365-378
                Affiliations
                [1 ]The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
                [2 ]The Department of Medical Biology and [3 ]The Department of Microbiology and Immunology, University of Melbourne, Parkville 3052, Australia
                [4 ]Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
                [5 ]The Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
                Author notes
                CORRESPONDENCE David Tarlinton: tarlinton@ 123456wehi.edu.au
                Article
                20091777
                10.1084/jem.20091777
                2822601
                20142430
                a31cd470-8b35-41b2-a4bf-a972c8c7840e
                © 2010 Zotos et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 14 August 2009
                : 8 January 2010
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article

                Related Documents Log