5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expanding the drug discovery space with predicted metabolite–target interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolites produced in the human gut are known modulators of host immunity. However, large-scale identification of metabolite–host receptor interactions remains a daunting challenge. Here, we employed computational approaches to identify 983 potential metabolite–target interactions using the Inflammatory Bowel Disease (IBD) cohort dataset of the Human Microbiome Project 2 (HMP2). Using a consensus of multiple machine learning methods, we ranked metabolites based on importance to IBD, followed by virtual ligand-based screening to identify possible human targets and adding evidence from compound assay, differential gene expression, pathway enrichment, and genome-wide association studies. We confirmed known metabolite–target pairs such as nicotinic acid–GPR109a or linoleoyl ethanolamide–GPR119 and inferred interactions of interest including oleanolic acid–GABRG2 and alpha-CEHC–THRB. Eleven metabolites were tested for bioactivity in vitro using human primary cell-types. By expanding the universe of possible microbial metabolite–host protein interactions, we provide multiple drug targets for potential immune-therapies.

          Abstract

          Using computational approaches, Nuzzo et al. identify 983 potential metabolite–human target interactions from the Inflammatory Bowel Disease (IBD) cohort dataset of the Human Microbiome Project 2 (HMP2) and public databases. These predicted interactions can further the understanding of host–microbiome interactions and assist in drug discovery for IBD and other diseases.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

            In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

              Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
                Bookmark

                Author and article information

                Contributors
                andrea.8.nuzzo@gsk.com
                jim.brown@kaleido.com
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                5 March 2021
                5 March 2021
                2021
                : 4
                : 288
                Affiliations
                [1 ]GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA 19426-0989 USA
                [2 ]Eurofins Discovery, 111 Anza Boulevard, Burlingame, CA 94010 USA
                [3 ]Present Address: EMD Serono Research & Development Institute, Inc. 45A Middlesex Turnpike, Billerica, MA 01821 USA
                [4 ]Present Address: Kaleido Biosciences, Inc. 65 Hayden Avenue, Lexington, MA 02421 USA
                Author information
                http://orcid.org/0000-0002-1630-6499
                http://orcid.org/0000-0001-5149-6665
                http://orcid.org/0000-0002-9368-627X
                Article
                1822
                10.1038/s42003-021-01822-x
                7935942
                33674782
                a31f1475-380e-47b1-a707-9a140f4e7a45
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 September 2020
                : 5 February 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                drug development,cellular signalling networks
                drug development, cellular signalling networks

                Comments

                Comment on this article