Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lysosomes: fusion and function.

      Nature reviews. Molecular cell biology

      metabolism, Proteins, Phagocytosis, Membrane Fusion, virology, ultrastructure, secretion, parasitology, microbiology, Lysosomes, Humans, Cell-Free System, Biological Evolution, Autophagy, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: not found

          A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole.

           Kevin S Emr,  C Rieder (1997)
          Protein transport to the lysosome-like vacuole in yeast is mediated by multiple pathways, including the biosynthetic routes for vacuolar hydrolases, the endocytic pathway, and autophagy. Among the more than 40 genes required for vacuolar protein sorting (VPS) in Saccharomyces cerevisiae, mutations in the four class C VPS genes result in the most severe vacuolar protein sorting and morphology defects. Herein, we provide complementary genetic and biochemical evidence that the class C VPS gene products (Vps18p, Vps11p, Vps16p, and Vps33p) physically and functionally interact to mediate a late step in protein transport to the vacuole. Chemical cross-linking experiments demonstrated that Vps11p and Vps18p, which both contain RING finger zinc-binding domains, are components of a hetero-oligomeric protein complex that includes Vps16p and the Sec1p homologue Vps33p. The class C Vps protein complex colocalized with vacuolar membranes and a distinct dense membrane fraction. Analysis of cells harboring a temperature-conditional vps18 allele (vps18tsf) indicated that Vps18p function is required for the biosynthetic, endocytic, and autophagic protein transport pathways to the vacuole. In addition, vps18tsf cells accumulated multivesicular bodies, autophagosomes, and other membrane compartments that appear to represent blocked transport intermediates. Overproduction of either Vps16p or the vacuolar syntaxin homologue Vam3p suppressed defects associated with vps18tsf mutant cells, indicating that the class C Vps proteins and Vam3p may functionally interact. Thus we propose that the class C Vps proteins are components of a hetero-oligomeric protein complex that mediates the delivery of multiple transport intermediates to the vacuole.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events.

            People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rab7 A Key to Lysosome Biogenesis

                Bookmark

                Author and article information

                Journal
                10.1038/nrm2217
                17637737

                Comments

                Comment on this article