19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The grapefruit: an old wine in a new glass? Metabolic and cardiovascular perspectives

      research-article
      , BSc, BSc (Med Hons), MSc (Med), PhD (Pharmacol) , BPharm (Hons), MSc (Clin Pharm), PhD (Pharmacol)
      Cardiovascular Journal of Africa
      Clinics Cardive Publishing
      grapefruit juice, naringin, hesperidin, drug interactions, diabetes mellitus, cardiovascular disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary

          Grapefruit is a popular, tasty and nutritive fruit enjoyed globally. Biomedical evidence in the last 10 years has, however, shown that consumption of grapefruit or its juice is associated with drug interactions, which, in some cases, have been fatal. Grapefruit-induced drug interactions are unique in that the cytochrome P450 enzyme CYP3A4, which metabolises over 60% of commonly prescribed drugs as well as other drug transporter proteins such as P-glycoprotein and organic cation transporter proteins, which are all expressed in the intestines, are involved. However, the extent to which grapefruit–drug interactions impact on clinical settings has not been fully determined, probably because many cases are not reported.

          It has recently emerged that grapefruit, by virtue of its rich flavonoid content, is beneficial in the management of degenerative diseases such as diabetes and cardiovascular disorders. This potentially explosive subject is reviewed here.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.

          Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women.

            Dietary flavonoids may have beneficial cardiovascular effects in human populations, but epidemiologic study results have not been conclusive. We used flavonoid food composition data from 3 recently available US Department of Agriculture databases to improve estimates of dietary flavonoid intake and to evaluate the association between flavonoid intake and cardiovascular disease (CVD) mortality. Study participants were 34 489 postmenopausal women in the Iowa Women's Health Study who were free of CVD and had complete food-frequency questionnaire information at baseline. Intakes of total flavonoids and 7 subclasses were categorized into quintiles, and food sources were grouped into frequency categories. Proportional hazards rate ratios (RR) were computed for CVD, coronary heart disease (CHD), stroke, and total mortality after 16 y of follow-up. After multivariate adjustment, significant inverse associations were observed between anthocyanidins and CHD, CVD, and total mortality [RR (95% CI) for any versus no intake: 0.88 (0.78, 0.99), 0.91 (0.83, 0.99), and 0.90 (0.86, 0.95)]; between flavanones and CHD [RR for highest quintile versus lowest: 0.78 (0.65, 0.94)]; and between flavones and total mortality [RR for highest quintile versus lowest: 0.88 (0.82, 0.96)]. No association was found between flavonoid intake and stroke mortality. Individual flavonoid-rich foods associated with significant mortality reduction included bran (added to foods; associated with stroke and CVD); apples or pears or both and red wine (associated with CHD and CVD); grapefruit (associated with CHD); strawberries (associated with CVD); and chocolate (associated with CVD). Dietary intakes of flavanones, anthocyanidins, and certain foods rich in flavonoids were associated with reduced risk of death due to CHD, CVD, and all causes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice.

              Flavonoids have been identified as the antidiabetic components in a number of traditional ethnic remedies. However, the mechanisms whereby these compounds exert their hypoglycemic and hypolipidemic action in type-2 diabetes have rarely been investigated. Therefore, this study investigated the effect of the flavonoids hesperidin and naringin on glucose and lipid regulation in C57BL/KsJ-db/db mice. Hesperidin and naringin both significantly increased the glucokinase mRNA level, while naringin also lowered the mRNA expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver. In addition, the hepatic glucose transporter 2 protein expression was significantly reduced, while the expression of adipocyte glucose transporter 4 and hepatic and adipocyte peroxisome proliferator-activated receptor gamma were elevated in the hesperidin and naringin groups when compared with the control group. Furthermore, hesperidin and naringin effectively lowered the plasma free fatty acid and plasma and hepatic triglyceride levels, and simultaneously reduced the hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. These changes were seemingly attributable to a suppression of the hepatic fatty acid synthase, glucose-6-phosphate dehydrogenase, and phosphatidate phosphohydrolase activities and an increase in the fecal triglycerides. The two flavonoids also led to a decrease in the plasma and hepatic cholesterol levels that may have been partly due to the decreased hepatic 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase and acyl CoA: cholesterol acyltransferase (ACAT) activities and increased fecal cholesterol. Consequently, the current results suggest that hesperidin and naringin are beneficial for improving hyperlipidemia and hyperglycemia in type-2 diabetic animals by partly regulating the fatty acid and cholesterol metabolism and affecting the gene expression of glucose-regulating enzymes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cardiovasc J Afr
                Cardiovasc J Afr
                TBC
                Cardiovascular Journal of Africa
                Clinics Cardive Publishing
                1995-1892
                1680-0745
                October 2010
                : 21
                : 5
                : 280-285
                Affiliations
                Department of Pharmacology, School of Pharmacy and Pharmacology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
                Department of Pharmacology, School of Pharmacy and Pharmacology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
                Article
                10.5830/CVJA-2010-012
                3721883
                20972517
                a33bb1ca-1ce3-428c-8a73-73693e405df4
                Copyright © 2010 Clinics Cardive Publishing

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2009
                : 10 March 2010
                Categories
                Review Article

                grapefruit juice,naringin,hesperidin,drug interactions,diabetes mellitus,cardiovascular disease

                Comments

                Comment on this article