92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Printability and Shape Fidelity of Bioinks in 3D Bioprinting

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.

          Related collections

          Most cited references281

          • Record: found
          • Abstract: found
          • Article: not found

          3D bioprinting of tissues and organs.

          Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
            • Record: found
            • Abstract: found
            • Article: not found

            Biomimetic 4D printing.

            Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.
              • Record: found
              • Abstract: found
              • Article: not found

              3D bioprinting of collagen to rebuild components of the human heart

              Collagen is the primary component of the extracellular matrix in the human body. It has proved challenging to fabricate collagen scaffolds capable of replicating the structure and function of tissues and organs. We present a method to 3D-bioprint collagen using freeform reversible embedding of suspended hydrogels (FRESH) to engineer components of the human heart at various scales, from capillaries to the full organ. Control of pH-driven gelation provides 20-micrometer filament resolution, a porous microstructure that enables rapid cellular infiltration and microvascularization, and mechanical strength for fabrication and perfusion of multiscale vasculature and tri-leaflet valves. We found that FRESH 3D-bioprinted hearts accurately reproduce patient-specific anatomical structure as determined by micro–computed tomography. Cardiac ventricles printed with human cardiomyocytes showed synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole.

                Author and article information

                Journal
                Chem Rev
                Chem Rev
                cr
                chreay
                Chemical Reviews
                American Chemical Society
                0009-2665
                1520-6890
                28 August 2020
                14 October 2020
                : 120
                : 19 , 3D Printing for Biomaterials
                : 10850-10877
                Affiliations
                []AO Research Institute Davos , Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
                []Department of Orthopaedics, University Medical Center Utrecht, Utrecht University , Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
                [§ ]Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University , Yalelaan 1, 3584 CL, Utrecht, The Netherlands
                []Department of Developmental BioEngineering, Technical Medical Centre, University of Twente , Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
                Author notes
                Article
                10.1021/acs.chemrev.0c00084
                7564085
                32856892
                a340128f-0e09-4065-bbc3-4725ffa0676c

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 31 January 2020
                Categories
                Review
                Custom metadata
                cr0c00084
                cr0c00084

                Chemistry
                Chemistry

                Comments

                Comment on this article

                Related Documents Log