18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optimal degradation of organophosphorus pesticide at low levels in water using fenton and photo-fenton processes and identification of by-products by GC-MS/MS.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aiming to determine the optimal conditions to degrade an organophosphate pesticide diazinon (DZN) at low levels concentrations (μg.mL-1) and to identify the by-products generated. The degradation processes utilized were the Fenton and photo-Fenton. The iron concentration [Fe2+], the hydrogen peroxide concentrations [H2O2], and the solution pH are the investigated parameters. The Doehlert three-parameter experimental design was applied to model and optimize both degradation processes. The mathematical models suggested were assessed and validated by application of analysis of variances ANOVA. In the case of Fenton process, the greatest yield of degradation (79%) was obtained at [Fe2+] = 35 mg.L-1 (0.63 mmol.L-1), [H2O2] = 423 mg.L-1 (12.44 mmol.L-1), and pH = 5.0. In photo-Fenton process, the maximum yield of degradation (96%) was obtained under the conditions of [Fe2+] = 29 mg.L-1 (0.52 mmol.L-1), [H2O2] = 258 mg.L-1 (7.59 mmol.L-1) and pH = 4.6. QuEChERS (quick, easy, cheap, effective, rugged, and safe), as extraction technique, and GC-MS/MS (gas chromatography coupled with triple quadrupole mass spectrometry) were used to identify the by-products degradation of DZN. The identified compounds are diazoxon, triethyl phosphate, triethyl thiophosphate, 2-isopropyl-5-ethyl-6-methylpyrimidine-4-ol, 2-isopropyl-6-methylpyrimidine-4-ol (IMP) and hydroxydiazinon. Three possible pathways for diazinon degradation have been suggested and the hydroxylation, oxidation and hydrolysis are likely probable degradation mechanisms.

          Related collections

          Author and article information

          Journal
          Chemosphere
          Chemosphere
          Elsevier BV
          1879-1298
          0045-6535
          Sep 2021
          : 279
          Affiliations
          [1 ] Laboratory of Industrial Process Engineering Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El-Alia, 16111, Bab-Ezzouar, Algiers, Algeria; Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France.
          [2 ] Laboratory of Industrial Process Engineering Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El-Alia, 16111, Bab-Ezzouar, Algiers, Algeria.
          [3 ] Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France.
          [4 ] Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France; Université D'Artois, IUT de Béthune, 62400, Béthune, France. Electronic address: yassine.kadmi@univ-lille.fr.
          Article
          S0045-6535(21)01015-8
          10.1016/j.chemosphere.2021.130544
          34134402
          a341faec-8a54-442a-b836-6fa1ba391845
          History

          Advanced oxidation process,Degradation,Detection of by-products,Diazinon,Water

          Comments

          Comment on this article

          Related Documents Log