25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intragastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its related protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Applications for ROCK kinase inhibition.

          ROCK kinases, which play central roles in the organization of the actin cytoskeleton, are tantalizing targets for the treatment of human diseases. Deletion of ROCK I in mice revealed a role in the pathophysiological responses to high blood pressure, and validated ROCK inhibition for the treatment of specific types of cardiovascular disease. To date, the only ROCK inhibitor employed clinically in humans is fasudil, which has been used safely in Japan since 1995 for the treatment of cerebral vasospasm. Clinical trials, mostly focusing on the cardiovascular system, have uncovered beneficial effects of fasudil for additional indications. Intriguing recent findings also suggest significant potential for ROCK inhibitors in the production and implantation of stem cells for disease therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells.

            Abnormal vascular smooth muscle cell (VSMC) contraction plays an important role in vascular diseases. The RhoA/ROCK signaling pathway is now well recognized to mediate vascular smooth muscle contraction in response to vasoconstrictors by inhibiting myosin phosphatase (MLCP) activity and increasing myosin light chain phosphorylation. Two ROCK isoforms, ROCK1 and ROCK2, are expressed in many tissues, yet the isoform-specific roles of ROCK1 and ROCK2 in vascular smooth muscle and the mechanism of ROCK-mediated regulation of MLCP are not well understood. In this study, ROCK2, but not ROCK1, bound directly to the myosin binding subunit of MLCP, yet both ROCK isoforms regulated MLCP and myosin light chain phosphorylation. Despite that both ROCK1 and ROCK2 regulated MLCP, the ROCK isoforms had distinct and opposing effects on VSMC morphology and ROCK2, but not ROCK1, had a predominant role in VSMC contractility. These data support that although the ROCK isoforms both regulate MLCP and myosin light chain phosphorylation through different mechanisms, they have distinct roles in VSMC function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway.

              Oxidative stress-induced neuronal apoptosis is a prominent feature found in neurodegenerative disorders. However, how oxidative stress induces neuronal apoptosis is not well understood. To address this question, undifferentiated and differentiated neuronal cell lines (PC12 and SH-SY5Y) were exposed to hydrogen peroxide (H(2)O(2)), a major oxidant generated when oxidative stress occurs. We observed that H(2)O(2) induced generation of reactive oxygen species (ROS), leading to apoptosis of the cells in a concentration- and time-dependent manner. H(2)O(2) rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2, JNK or p38 with kinase inhibitors (U0126, SP600125 or PD169316, respectively), downregulation of Erk1/2 or p38 using RNA interference, or expression of dominant negative c-Jun partially prevented H(2)O(2)-induced apoptosis. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged H(2)O(2)-induced ROS, blocking activation of MAPKs and cell death. Furthermore, we found that H(2)O(2)-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented H(2)O(2)-activation of Erk/12, JNK and p38, as well as cell death. Similar results were observed in primary murine neurons as well. The results suggest that H(2)O(2)-induction of ROS inhibit PP2A and PP5, leading to activation of Erk1/2, JNK and p38 pathways thereby resulting in neuronal apoptosis. Our findings suggest that inhibitors of MAPKs (JNK, Erk1/2 and p38), activators of phosphatases (PP2A and PP5) or antioxidants may have potentials to prevent and treat oxidative stress-induced neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                September 2015
                : 10
                : 9
                : 1441-1449
                Affiliations
                [1]Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
                Author notes
                [* ] Correspondence to: Yan-kun Shao or Zhong-xin Xu, yankunshao@ 123456163.com or zhongxinxu@ 123456163.com .

                Author contributions: YKS and ZXX designed this study, validated the paper and instructed the research. YYY provided and integrated experimental data and wrote the paper. XMW and HC prepared rat models of chronic cerebral ischemia. YJ performed experiments. JM and JTH conceived the study protocol and were responsible for data acquisition. All authors approved the final version of this paper .

                Author information
                http://orcid.org/0000-0002-1267-3208
                http://orcid.org/0000-0001-7066-7159
                Article
                NRR-10-1441
                10.4103/1673-5374.165512
                4625510
                26604905
                a344d332-697d-4b98-8872-49be6d76285e
                Copyright: © Neural Regeneration Research

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 02 June 2015
                Categories
                Research Article

                nerve regeneration,chronic cerebral ischemia,fasudil,rho-kinase,alpha smooth muscle actin,myosin-binding subunit,cognitive impairment,caspase-3,apoptosis,neural regeneration

                Comments

                Comment on this article