41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis

      review-article
      *
      Arthritis
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis is the most common arthritic condition, which involves progressive degeneration of articular cartilage. The most recent accomplishments have significantly advanced our understanding on the mechanisms of the disease development and progression. The most intriguing is the growing evidence indicating that extracellular matrix destruction in osteoarthritic articular cartilage resembles that in the hypertrophic zone of fetal growth plate during endochondral ossification. This suggests common regulatory mechanisms of matrix degradation in OA and in the development and can provide new approaches for the treatment of the disease by targeting reparation of chondrocyte phenotype.

          Related collections

          Most cited references233

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

          Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone resorption inhibitors as potential disease-modifying pharmaco-therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.

            We demonstrate the direct involvement of increased collagenase activity in the cleavage of type II collagen in osteoarthritic human femoral condylar cartilage by developing and using antibodies reactive to carboxy-terminal (COL2-3/4C(short)) and amino-terminal (COL2-1/4N1) neoepitopes generated by cleavage of native human type II collagen by collagenase matrix metalloproteinase (MMP)-1 (collagenase-1), MMP-8 (collagenase-2), and MMP-13 (collagenase-3). A secondary cleavage followed the initial cleavage produced by these recombinant collagenases. This generated neoepitope COL2-1/4N2. There was significantly more COL2-3/4C(short) neoepitope in osteoarthritis (OA) compared to adult nonarthritic cartilages as determined by immunoassay of cartilage extracts. A synthetic preferential inhibitor of MMP-13 significantly reduced the unstimulated release in culture of neoepitope COL2-3/4C(short) from human osteoarthritic cartilage explants. These data suggest that collagenase(s) produced by chondrocytes is (are) involved in the cleavage and denaturation of type II collagen in articular cartilage, that this is increased in OA, and that MMP-13 may play a significant role in this process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage.

              To determine whether interleukin-1 (IL-1) or tumor necrosis factor alpha (TNFalpha), or both, plays a role in the excessive degradation that is observed in cultured osteoarthritic (OA) articular cartilage. Antagonists of IL-1 and TNFalpha, namely, IL-1 receptor antagonist and the PEGylated soluble TNFalpha receptor I, respectively, were added at different concentrations to explant cultures of nonarthritic (5 obtained at autopsy) and OA (15 obtained at arthroplasty) articular cartilage. The cleavage of type II collagen (CII) by collagenase was measured by an immunoassay in cartilage and culture media. Proteoglycan (mainly aggrecan) content and degradation were measured by a colorimetric assay for glycosaminoglycan (GAG) content in cartilage and culture media. Reverse transcriptase-polymerase chain reaction was used to analyze gene expression of matrix metalloproteases (MMPs) 1, 3, and 13, CII, aggrecan, IL-1, and TNFalpha. Antagonists of IL-1 and TNFalpha inhibited the increase in CII cleavage by collagenase as well as the increase in GAG release observed in OA cartilage compared with normal cartilage. Inhibition was significant in tissue from some patients but not from others, although significant inhibition was observed when all the results were analyzed together. An increase in the GAG content in cartilage was seen in 4 of 15 cases. However, this increase was not significant when all the data were combined. Preliminary results indicated no effect of these antagonists on nonarthritic cartilage from 3 different donors. Independent analyses of gene expression in cultured cartilage from 9 other OA patients revealed that IL-1 or TNFalpha blockade, either alone and/or in combination, frequently down-regulated MMP-1, MMP-3, and MMP-13 expression. Expression of IL-1 and TNFalpha was inhibited by either antagonist or by the combination in essentially half the cases. The combined blockade up-regulated aggrecan and CII gene expression in approximately half the cases. These results suggest that the autocrine/paracrine activities of TNFalpha and IL-1 in articular cartilage may play important roles in cartilage matrix degradation in OA patients but not in all patients. Inhibition of either or both of these cytokines may offer a useful therapeutic approach to the management of OA by reducing gene expression of MMPs involved in cartilage matrix degradation and favoring its repair.
                Bookmark

                Author and article information

                Journal
                Arthritis
                ARTH
                Arthritis
                Hindawi Publishing Corporation
                2090-1984
                2090-1992
                2011
                29 December 2010
                : 2011
                : 683970
                Affiliations
                Institute of Rheumatology, Russian Academy of Medical Sciences, Kashirskoye Shosse 34A, Moscow 115522, Russia
                Author notes
                *Elena V. Tchetina: etchetina@ 123456mail.ru

                Academic Editor: Henning Bliddal

                Article
                10.1155/2011/683970
                3199933
                22046522
                a34a536f-e517-44d3-8e81-67a565bbd199
                Copyright © 2011 Elena V. Tchetina.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 August 2010
                : 9 December 2010
                Categories
                Review Article

                Rheumatology
                Rheumatology

                Comments

                Comment on this article