98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular, pharmacological and functional diversity of 5-HT receptors.

        1 , ,
      Pharmacology, biochemistry, and behavior
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics of mouse behavior: interactions with laboratory environment.

          Strains of mice that show characteristic patterns of behavior are critical for research in neurobehavioral genetics. Possible confounding influences of the laboratory environment were studied in several inbred strains and one null mutant by simultaneous testing in three laboratories on a battery of six behaviors. Apparatus, test protocols, and many environmental variables were rigorously equated. Strains differed markedly in all behaviors, and despite standardization, there were systematic differences in behavior across labs. For some tests, the magnitude of genetic differences depended upon the specific testing lab. Thus, experiments characterizing mutants may yield results that are idiosyncratic to a particular laboratory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action.

            Psilocybin, an indoleamine hallucinogen, produces a psychosis-like syndrome in humans that resembles first episodes of schizophrenia. In healthy human volunteers, the psychotomimetic effects of psilocybin were blocked dose-dependently by the serotonin-2A antagonist ketanserin or the atypical antipsychotic risperidone, but were increased by the dopamine antagonist and typical antipsychotic haloperidol. These data are consistent with animal studies and provide the first evidence in humans that psilocybin-induced psychosis is due to serotonin-2A receptor activation, independently of dopamine stimulation. Thus, serotonin-2A overactivity may be involved in the pathophysiology of schizophrenia and serotonin-2A antagonism may contribute to therapeutic effects of antipsychotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of serotonin-2C receptor G-protein coupling by RNA editing.

              The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) elicits a wide array of physiological effects by binding to several receptor subtypes. The 5-HT2 family of receptors belongs to a large group of seven-transmembrane-spanning G-protein-coupled receptors and includes three receptor subtypes (5-HT2A, 5-HT(2B) and 5-HT(2C)) which are linked to phospholipase C, promoting the hydrolysis of membrane phospholipids and a subsequent increase in the intracellular levels of inositol phosphates and diacylglycerol. Here we show that transcripts encoding the 2C subtype of serotonin receptor (5-HT(2C)R) undergo RNA editing events in which genomically encoded adenosine residues are converted to inosines by the action of double-stranded RNA adenosine deaminase(s). Sequence analysis of complementary DNA isolates from dissected brain regions have indicated the tissue-specific expression of seven major 5-HT(2C) receptor isoforms encoded by eleven distinct RNA species. Editing of 5-HT(2C)R messenger RNAs alters the amino-acid coding potential of the predicted second intracellular loop of the receptor and can lead to a 10-15-fold reduction in the efficacy of the interaction between receptors and their G proteins. These observations indicate that RNA editing is a new mechanism for regulating serotonergic signal transduction and suggest that this post-transcriptional modification may be critical for modulating the different cellular functions that are mediated by other members of the G-protein-coupled receptor superfamily.
                Bookmark

                Author and article information

                Journal
                Pharmacol Biochem Behav
                Pharmacology, biochemistry, and behavior
                Elsevier BV
                0091-3057
                0091-3057
                Apr 2002
                : 71
                : 4
                Affiliations
                [1 ] Nervous System Research, WSJ.386.745, Novartis Pharma AG., CH-4002, Basel, Switzerland. daniel1.hoyer@ pharma.novartis.com
                Article
                S0091305701007468
                10.1016/s0091-3057(01)00746-8
                11888546
                a34f42fc-345e-40e2-91ec-3cbef57d7fdd
                History

                Comments

                Comment on this article