57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myoblast transplantation has been extensively studied as a gene complementation approach for genetic diseases such as Duchenne Muscular Dystrophy. This approach has been found capable of delivering dystrophin, the product missing in Duchenne Muscular Dystrophy muscle, and leading to an increase of strength in the dystrophic muscle. This approach, however, has been hindered by numerous limitations, including immunological problems, and low spread and poor survival of the injected myoblasts. We have investigated whether antiinflammatory treatment and use of different populations of skeletal muscle–derived cells may circumvent the poor survival of the injected myoblasts after implantation. We have observed that different populations of muscle-derived cells can be isolated from skeletal muscle based on their desmin immunoreactivity and differentiation capacity. Moreover, these cells acted differently when injected into muscle: 95% of the injected cells in some populations died within 48 h, while others richer in desmin-positive cells survived entirely. Since pure myoblasts obtained from isolated myofibers and myoblast cell lines also displayed a poor survival rate of the injected cells, we have concluded that the differential survival of the populations of muscle-derived cells is not only attributable to their content in desmin-positive cells. We have observed that the origin of the myogenic cells may influence their survival in the injected muscle. Finally, we have observed that myoblasts genetically engineered to express an inhibitor of the inflammatory cytokine, IL-1, can improve the survival rate of the injected myoblasts. Our results suggest that selection of specific muscle-derived cell populations or the control of inflammation can be used as an approach to improve cell survival after both myoblast transplantation and the myoblast-mediated ex vivo gene transfer approach.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix.

          The primary sequence of two components of the dystrophin-glycoprotein complex has been established by complementary, DNA cloning. The transmembrane 43K and extracellular 156K dystrophin-associated glycoproteins (DAGs) are encoded by a single messenger RNA and the extracellular 156K DAG binds laminin. Thus, the 156K DAG is a new laminin-binding glycoprotein which may provide a linkage between the sarcolemma and extracellular matrix. These results support the hypothesis that the dramatic reduction in the 156K DAG in Duchenne muscular dystrophy leads to a loss of a linkage between the sarcolemma and extracellular matrix and that this may render muscle fibres more susceptible to necrosis.
            • Record: found
            • Abstract: found
            • Article: not found

            Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts.

            An important corollary to the recent advances in our understanding of the primary cause of Duchenne muscular dystrophy, is the validation of genuine genetic homologues as animal models of the disease in which potential therapies can be tested. The persistent skeletal muscle necrosis that characterizes human Duchenne muscular dystrophy is also seen in the mdx mouse and is, in both, a consequence of a deficiency of dystrophin, probably within the muscle fibres themselves. As injected muscle precursor cells of one genotype can fuse with host muscle fibres of a different genotype and express the donor genes, we decided to test grafts of normal muscle precursor cells to see if they could induce synthesis of dystrophin in innately dystrophin-deficient mdx muscle fibres. We show that injected normal muscle precursor cells can fuse with pre-existing or regenerating mdx muscle fibres to render many of these fibres dystrophin-positive and so to partially or wholly rescue them from their biochemical defect.
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.

              An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes.

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 September 1998
                : 142
                : 5
                : 1257-1267
                Affiliations
                [* ]Department of Orthopedic Surgery, Musculoskeletal Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15261; []Department of Human Genetics, and [§ ]Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
                Article
                10.1083/jcb.142.5.1257
                2149359
                9732286
                a353db56-9ebd-45b8-98b5-a0f6bdd0c82c
                Copyright @ 1998
                History
                : 24 February 1998
                : 31 July 1998
                Categories
                Articles

                Cell biology
                myoblast transplantation,inflammation,gene transfer,adenovirus,muscle derived stem cells

                Comments

                Comment on this article

                Related Documents Log